Janelia Farm Research Campus, HHMI, Ashburn, Virginia 20147, USA.
Nature. 2013 Aug 8;500(7461):175-81. doi: 10.1038/nature12450.
Animal behaviour arises from computations in neuronal circuits, but our understanding of these computations has been frustrated by the lack of detailed synaptic connection maps, or connectomes. For example, despite intensive investigations over half a century, the neuronal implementation of local motion detection in the insect visual system remains elusive. Here we develop a semi-automated pipeline using electron microscopy to reconstruct a connectome, containing 379 neurons and 8,637 chemical synaptic contacts, within the Drosophila optic medulla. By matching reconstructed neurons to examples from light microscopy, we assigned neurons to cell types and assembled a connectome of the repeating module of the medulla. Within this module, we identified cell types constituting a motion detection circuit, and showed that the connections onto individual motion-sensitive neurons in this circuit were consistent with their direction selectivity. Our results identify cellular targets for future functional investigations, and demonstrate that connectomes can provide key insights into neuronal computations.
动物行为源于神经元回路中的计算,但由于缺乏详细的突触连接图谱或连接组,我们对这些计算的理解一直受到阻碍。例如,尽管半个多世纪以来进行了深入的研究,但昆虫视觉系统中局部运动检测的神经元实现仍然难以捉摸。在这里,我们开发了一种使用电子显微镜重建连接组的半自动流水线,其中包含果蝇视神经髓内的 379 个神经元和 8637 个化学突触接触。通过将重建的神经元与来自光学显微镜的示例进行匹配,我们将神经元分配到细胞类型,并组装了视神经髓重复模块的连接组。在这个模块中,我们确定了构成运动检测电路的细胞类型,并表明该电路中单个运动敏感神经元的连接与其方向选择性一致。我们的结果确定了未来功能研究的细胞靶标,并表明连接组可以为神经元计算提供关键见解。