Loudon G H, Jones N B, Sehmi A S
Department of Engineering, University of Leicester, UK.
Med Biol Eng Comput. 1992 Nov;30(6):591-9. doi: 10.1007/BF02446790.
This paper relates to the use of knowledge-based signal processing techniques in the decomposition of EMG signals. The aim of the research is to automatically decompose EMG signals recorded at force levels up to 20 per cent maximum voluntary contraction (MVC) into their constituent motor unit action potentials (MUAPS), and to display the MUAP shapes and firing times for the clinician. This requires the classification of nonoverlapping MUAPs and superimposed waveforms formed from overlapping MUAPs in the signal. Nonoverlapping MUAPs are classified using a statistical pattern-recognition method. The decomposition of superimposed waveforms uses a combination of procedural and knowledge-based methods. The decomposition method was tested on real and simulated EMG data recorded at force levels up to 20 per cent MVC. The different EMG signals contained up to six motor units (MUs). The new decomposition program classifies the total number of MUAP firings in an EMG signal with an accuracy always greater than 95 per cent. The decomposition program takes about 15s to classify all nonoverlapping MUAPs in EMG signal of length 1.0s and, on average, an extra 9s to classify each superimposed waveform.
本文涉及基于知识的信号处理技术在肌电信号分解中的应用。该研究的目的是将在高达最大自主收缩(MVC)20%的力水平下记录的肌电信号自动分解为其组成的运动单位动作电位(MUAPs),并为临床医生显示MUAP的形状和发放时间。这需要对信号中不重叠的MUAP和由重叠MUAP形成的叠加波形进行分类。不重叠的MUAP使用统计模式识别方法进行分类。叠加波形的分解使用程序方法和基于知识的方法相结合。该分解方法在高达MVC 20%的力水平下记录的真实和模拟肌电数据上进行了测试。不同的肌电信号包含多达六个运动单位(MUs)。新的分解程序对肌电信号中MUAP发放的总数进行分类,准确率始终大于95%。分解程序对长度为1.0s的肌电信号中的所有不重叠MUAP进行分类大约需要15秒,平均而言,对每个叠加波形进行分类还需要额外9秒。