Nishida Motohiro, Sugimoto Kenji, Hara Yuji, Mori Emiko, Morii Takashi, Kurosaki Tomohiro, Mori Yasuo
Division of Molecular and Cellular Physiology, Center for Integrative Bioscience, Okazaki National Research Institutes, Okazaki, Aichi 444-8585, Japan.
EMBO J. 2003 Sep 15;22(18):4677-88. doi: 10.1093/emboj/cdg457.
In non-excitable cells, receptor-activated Ca2+ signalling comprises initial transient responses followed by a Ca2+ entry-dependent sustained and/or oscillatory phase. Here, we describe the molecular mechanism underlying the second phase linked to signal amplification. An in vivo inositol 1,4,5-trisphosphate (IP3) sensor revealed that in B lymphocytes, receptor-activated and store-operated Ca2+ entry greatly enhanced IP3 production, which terminated in phospholipase Cgamma2 (PLCgamma2)-deficient cells. Association between receptor-activated TRPC3 Ca2+ channels and PLCgamma2, which cooperate in potentiating Ca2+ responses, was demonstrated by co-immunoprecipitation. PLCgamma2-deficient cells displayed diminished Ca2+ entry-induced Ca2+ responses. However, this defect was canceled by suppressing IP3-induced Ca2+ release, implying that IP3 and IP3 receptors mediate the second Ca2+ phase. Furthermore, confocal visualization of PLCgamma2 mutants demonstrated that Ca2+ entry evoked a C2 domain-mediated PLCgamma2 translocation towards the plasma membrane in a lipase-independent manner to activate PLCgamma2. Strikingly, Ca2+ entry-activated PLCgamma2 maintained Ca2+ oscillation and extracellular signal-regulated kinase activation downstream of protein kinase C. We suggest that coupling of Ca2+ entry with PLCgamma2 translocation and activation controls the amplification and co-ordination of receptor signalling.
在非兴奋性细胞中,受体激活的Ca2+信号传导包括初始的瞬时反应,随后是依赖Ca2+内流的持续和/或振荡阶段。在此,我们描述了与信号放大相关的第二阶段的分子机制。一种体内肌醇1,4,5-三磷酸(IP3)传感器显示,在B淋巴细胞中,受体激活和储存-操作性Ca2+内流极大地增强了IP3的产生,而在磷脂酶Cγ2(PLCγ2)缺陷的细胞中这种增强终止。通过免疫共沉淀证明了受体激活的TRPC3 Ca2+通道与PLCγ2之间的关联,它们在增强Ca2+反应中协同作用。PLCγ2缺陷的细胞显示Ca2+内流诱导的Ca2+反应减弱。然而,通过抑制IP3诱导的Ca2+释放可以消除这种缺陷,这意味着IP3和IP3受体介导了第二个Ca2+阶段。此外,PLCγ2突变体的共聚焦可视化显示,Ca2+内流以不依赖脂肪酶的方式引发C2结构域介导的PLCγ2向质膜的转位,从而激活PLCγ2。引人注目的是,Ca2+内流激活的PLCγ2在蛋白激酶C下游维持Ca2+振荡和细胞外信号调节激酶的激活。我们认为,Ca2+内流与PLCγ2转位和激活的偶联控制着受体信号的放大和协调。