Swem Lee R, Kraft Brian J, Swem Danielle L, Setterdahl Aaron T, Masuda Shinji, Knaff David B, Zaleski Jeffrey M, Bauer Carl E
Department of Biology, Indiana University, Bloomington, IN 47405, USA.
EMBO J. 2003 Sep 15;22(18):4699-708. doi: 10.1093/emboj/cdg461.
All living organisms alter their physiology in response to changes in oxygen tension. The photosynthetic bacterium uses the RegB-RegA signal transduction cascade to control a wide variety of oxygen-responding processes such as respiration, photosynthesis, carbon fixation and nitrogen fixation. We demonstrate that a highly conserved cysteine has a role in controlling the activity of the sensor kinase, RegB. In vitro studies indicate that exposure of RegB to oxidizing conditions results in the formation of an intermolecular disulfide bond and that disulfide bond formation is metal-dependent, with the metal fulfilling a structural role. Formation of a disulfide bond in vitro is also shown to convert the kinase from an active dimer into an inactive tetramer state. Mutational analysis indicates that a cysteine residue flanked by cationic amino acids is involved in redox sensing in vitro and in vivo. These residues appear to constitute a novel 'redox-box' that is present in sensor kinases from diverse species of bacteria.
所有生物都会根据氧张力的变化改变其生理状态。光合细菌利用RegB-RegA信号转导级联来控制多种氧响应过程,如呼吸作用、光合作用、碳固定和氮固定。我们证明,一个高度保守的半胱氨酸在控制传感激酶RegB的活性中起作用。体外研究表明,将RegB暴露于氧化条件下会导致分子间二硫键的形成,并且二硫键的形成是金属依赖性的,金属起到结构作用。体外二硫键的形成还显示会将激酶从活性二聚体转变为无活性的四聚体状态。突变分析表明,两侧为阳离子氨基酸的半胱氨酸残基在体外和体内的氧化还原传感中起作用。这些残基似乎构成了一个存在于多种细菌传感激酶中的新型“氧化还原框”。