Suppr超能文献

在氧化碳底物上进行光异养生长时,依赖 PioABC 的 Fe(II)氧化会增加生长产量。

PioABC-Dependent Fe(II) Oxidation during Photoheterotrophic Growth on an Oxidized Carbon Substrate Increases Growth Yield.

机构信息

BioTechnology Institute and Department of Plant and Microbial Biology, University of Minnesotagrid.17635.36, St. Paul, Minnesota, USA.

Department of Genetics, Cell Biology, and Development, University of Minnesotagrid.17635.36, Minneapolis, Minnesota, USA.

出版信息

Appl Environ Microbiol. 2022 Aug 9;88(15):e0097422. doi: 10.1128/aem.00974-22. Epub 2022 Jul 18.

Abstract

Microorganisms that carry out Fe(II) oxidation play a major role in biogeochemical cycling of iron in environments with low oxygen. Fe(II) oxidation has been largely studied in the context of autotrophy. Here, we show that the anoxygenic phototroph, Rhodopseudomonas palustris CGA010, carries out Fe(II) oxidation during photoheterotrophic growth with an oxidized carbon source, malate, leading to an increase in cell yield and allowing more carbon to be directed to cell biomass. We probed the regulatory basis for this by transcriptome sequencing (RNA-seq) and found that the expression levels of the known Fe(II) oxidation genes in R. palustris depended on the redox-sensing two-component system, RegSR, and the oxidation state of the carbon source provided to cells. This provides the first mechanistic demonstration of mixotrophic growth involving reducing power generated from both Fe(II) oxidation and carbon assimilation. The simultaneous use of carbon and reduced metals such as Fe(II) by bacteria is thought to be widespread in aquatic environments, and a mechanistic description of this process could improve our understanding of biogeochemical cycles. Anoxygenic phototrophic bacteria like Rhodopseudomonas palustris typically use light for energy and organic compounds as both a carbon and an electron source. They can also use CO for carbon by carbon dioxide fixation when electron-rich compounds like H, thiosulfate, and Fe(II) are provided as electron donors. Here, we show that Fe(II) oxidation can be used in another context to promote higher growth yields of R. palustris when the oxidized carbon compound malate is provided. We further established the regulatory mechanism underpinning this observation.

摘要

在氧气含量低的环境中,进行亚铁(Fe(II))氧化的微生物在铁的生物地球化学循环中起着重要作用。Fe(II)氧化在自养的背景下进行了大量研究。在这里,我们表明,兼性光养生物 Rhodopseudomonas palustris CGA010 在以氧化的碳源苹果酸进行异养生长时会进行 Fe(II)氧化,从而导致细胞产量增加,并使更多的碳能够用于细胞生物量。我们通过转录组测序(RNA-seq)探测了这种现象的调控基础,并发现 R. palustris 中已知的 Fe(II)氧化基因的表达水平取决于氧化还原感应的双组分系统 RegSR 和提供给细胞的碳源的氧化状态。这首次证明了涉及从 Fe(II)氧化和碳同化中产生还原力的混合营养生长。细菌同时利用碳和还原金属(如 Fe(II))被认为在水生环境中广泛存在,对这一过程的机制描述可以提高我们对生物地球化学循环的理解。类似于 Rhodopseudomonas palustris 的兼性光养细菌通常使用光作为能量,而有机化合物则同时作为碳源和电子源。当提供富电子化合物(如 H、硫代硫酸盐和 Fe(II))作为电子供体时,它们还可以通过二氧化碳固定作用利用 CO 作为碳源。在这里,我们表明,当提供氧化的碳化合物苹果酸时,Fe(II)氧化可以在另一种情况下用于促进 R. palustris 更高的生长产量。我们进一步建立了支持这一观察结果的调控机制。

相似文献

1
PioABC-Dependent Fe(II) Oxidation during Photoheterotrophic Growth on an Oxidized Carbon Substrate Increases Growth Yield.
Appl Environ Microbiol. 2022 Aug 9;88(15):e0097422. doi: 10.1128/aem.00974-22. Epub 2022 Jul 18.
2
Proteome Response of a Metabolically Flexible Anoxygenic Phototroph to Fe(II) Oxidation.
Appl Environ Microbiol. 2018 Aug 1;84(16). doi: 10.1128/AEM.01166-18. Print 2018 Aug 15.
4
Cryptic Cycling of Complexes Containing Fe(III) and Organic Matter by Phototrophic Fe(II)-Oxidizing Bacteria.
Appl Environ Microbiol. 2019 Apr 4;85(8). doi: 10.1128/AEM.02826-18. Print 2019 Apr 15.
5
Phototrophic Fe(II) oxidation by Rhodopseudomonas palustris TIE-1 in organic and Fe(II)-rich conditions.
Environ Microbiol. 2024 Mar;26(3):e16608. doi: 10.1111/1462-2920.16608.
6
Redox Regulation of a Light-Harvesting Antenna Complex in an Anoxygenic Phototroph.
mBio. 2019 Nov 26;10(6):e02838-19. doi: 10.1128/mBio.02838-19.
7
Anaerobic oxidation of ferrous iron by purple bacteria, a new type of phototrophic metabolism.
Appl Environ Microbiol. 1994 Dec;60(12):4517-26. doi: 10.1128/aem.60.12.4517-4526.1994.

引用本文的文献

1
A strain with a substantially smaller genome retains the core metabolic versatility of its genus.
Appl Environ Microbiol. 2025 Apr 23;91(4):e0205624. doi: 10.1128/aem.02056-24. Epub 2025 Mar 10.

本文引用的文献

2
An evolving view on biogeochemical cycling of iron.
Nat Rev Microbiol. 2021 Jun;19(6):360-374. doi: 10.1038/s41579-020-00502-7. Epub 2021 Feb 1.
3
Mixotrophy in marine picocyanobacteria: use of organic compounds by Prochlorococcus and Synechococcus.
ISME J. 2020 May;14(5):1065-1073. doi: 10.1038/s41396-020-0603-9. Epub 2020 Feb 7.
4
Photoferrotrophs Produce a PioAB Electron Conduit for Extracellular Electron Uptake.
mBio. 2019 Nov 5;10(6):e02668-19. doi: 10.1128/mBio.02668-19.
5
Cryptic Cycling of Complexes Containing Fe(III) and Organic Matter by Phototrophic Fe(II)-Oxidizing Bacteria.
Appl Environ Microbiol. 2019 Apr 4;85(8). doi: 10.1128/AEM.02826-18. Print 2019 Apr 15.
6
Microbial anaerobic Fe(II) oxidation - Ecology, mechanisms and environmental implications.
Environ Microbiol. 2018 Oct;20(10):3462-3483. doi: 10.1111/1462-2920.14328. Epub 2018 Oct 10.
7
Identifying and Quantifying the Intermediate Processes during Nitrate-Dependent Iron(II) Oxidation.
Environ Sci Technol. 2018 May 15;52(10):5771-5781. doi: 10.1021/acs.est.8b01122. Epub 2018 May 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验