Ritter Markus, Ravasio Andrea, Jakab Martin, Chwatal Sabine, Fürst Johannes, Laich Andreas, Gschwentner Martin, Signorelli Sara, Burtscher Carmen, Eichmüller Sonja, Paulmichl Markus
Department of Physiology, University of Innsbruck, Fritz-Pregl-Strasse 3, A-6020 Innsbruck, Austria.
J Biol Chem. 2003 Dec 12;278(50):50163-74. doi: 10.1074/jbc.M300374200. Epub 2003 Sep 11.
ICln is a multifunctional protein that is essential for cell volume regulation. It can be found in the cytosol and is associated with the cell membrane. Besides its role in the splicing process, ICln is critically involved in the generation of ion currents activated during regulatory volume decrease after cell swelling (RVDC). If reconstituted in artificial bilayers, ICln can form ion channels with biophysical properties related to RVDC. We investigated (i) the cytosol versus cell membrane distribution of ICln in rat kidney tubules, NIH 3T3 fibroblasts, Madin-Darby canine kidney (MDCK) cells, and LLC-PK1 epithelial cells, (ii) fluorescence resonance energy transfer (FRET) in living fibroblasts between fluorescently tagged ICln and fluorochromes in the cell membrane, and (iii) possible functional consequences of an enhanced ICln presence at the cell membrane. We demonstrate that ICln distribution in rat kidneys depends on the parenchymal localization and functional state of the tubules and that cell swelling causes ICln redistribution from the cytosol to the cell membrane in NIH 3T3 fibroblasts and LLC-PK1 cells. The addition of purified ICln protein to the extracellular solution or overexpression of farnesylated ICln leads to an increased anion permeability in NIH 3T3 fibroblasts. The swelling-induced redistribution of ICln correlates to altered kinetics of RVDC in NIH 3T3 fibroblasts, LLC-PK1 cells, and MDCK cells. In these cells, RVDC develops more rapidly, and in MDCK cells the rate of swelling-induced depolarization is accelerated if cells are swollen for a second time. This coincides with an enhanced ICln association with the cell membrane.
ICln是一种对细胞体积调节至关重要的多功能蛋白质。它存在于细胞质中,并与细胞膜相关联。除了在剪接过程中的作用外,ICln在细胞肿胀后调节性体积减小(RVDC)期间激活的离子电流产生中也起着关键作用。如果在人工双层膜中重构,ICln可以形成具有与RVDC相关的生物物理特性的离子通道。我们研究了:(i)ICln在大鼠肾小管、NIH 3T3成纤维细胞、Madin-Darby犬肾(MDCK)细胞和LLC-PK1上皮细胞中的细胞质与细胞膜分布;(ii)活的成纤维细胞中荧光标记的ICln与细胞膜中的荧光染料之间的荧光共振能量转移(FRET);以及(iii)细胞膜上ICln含量增加可能产生的功能后果。我们证明,大鼠肾脏中ICln的分布取决于肾小管的实质定位和功能状态,并且细胞肿胀会导致NIH 3T3成纤维细胞和LLC-PK1细胞中的ICln从细胞质重新分布到细胞膜。向细胞外溶液中添加纯化的ICln蛋白或法尼基化ICln的过表达会导致NIH 3T3成纤维细胞中阴离子通透性增加。ICln的肿胀诱导再分布与NIH 3T3成纤维细胞、LLC-PK1细胞和MDCK细胞中RVDC动力学的改变相关。在这些细胞中,RVDC发展得更快,并且在MDCK细胞中,如果细胞再次肿胀,肿胀诱导的去极化速率会加快。这与ICln与细胞膜的结合增强相吻合。