Suppr超能文献

九种拓扑预测程序的可靠性及其在整合膜通道蛋白和载体蛋白中的应用。

Reliability of nine programs of topological predictions and their application to integral membrane channel and carrier proteins.

作者信息

Reddy Abhinay, Cho Jaehoon, Ling Sam, Reddy Vamsee, Shlykov Maksim, Saier Milton H

机构信息

Department of Molecular Biology, University of California at San Diego, La Jolla, Calif., USA.

出版信息

J Mol Microbiol Biotechnol. 2014;24(3):161-90. doi: 10.1159/000363506. Epub 2014 Jun 27.

Abstract

We evaluated topological predictions for nine different programs, HMMTOP, TMHMM, SVMTOP, DAS, SOSUI, TOPCONS, PHOBIUS, MEMSAT-SVM (hereinafter referred to as MEMSAT), and SPOCTOPUS. These programs were first evaluated using four large topologically well-defined families of secondary transporters, and the three best programs were further evaluated using topologically more diverse families of channels and carriers. In the initial studies, the order of accuracy was: SPOCTOPUS > MEMSAT > HMMTOP > TOPCONS > PHOBIUS > TMHMM > SVMTOP > DAS > SOSUI. Some families, such as the Sugar Porter Family (2.A.1.1) of the Major Facilitator Superfamily (MFS; TC #2.A.1) and the Amino Acid/Polyamine/Organocation (APC) Family (TC #2.A.3), were correctly predicted with high accuracy while others, such as the Mitochondrial Carrier (MC) (TC #2.A.29) and the K(+) transporter (Trk) families (TC #2.A.38), were predicted with much lower accuracy. For small, topologically homogeneous families, SPOCTOPUS and MEMSAT were generally most reliable, while with large, more diverse superfamilies, HMMTOP often proved to have the greatest prediction accuracy. We next developed a novel program, TM-STATS, that tabulates HMMTOP, SPOCTOPUS or MEMSAT-based topological predictions for any subdivision (class, subclass, superfamily, family, subfamily, or any combination of these) of the Transporter Classification Database (TCDB; www.tcdb.org) and examined the following subclasses: α-type channel proteins (TC subclasses 1.A and 1.E), secreted pore-forming toxins (TC subclass 1.C) and secondary carriers (subclass 2.A). Histograms were generated for each of these subclasses, and the results were analyzed according to subclass, family and protein. The results provide an update of topological predictions for integral membrane transport proteins as well as guides for the development of more reliable topological prediction programs, taking family-specific characteristics into account.

摘要

我们评估了九种不同程序的拓扑预测结果,这些程序分别是HMMTOP、TMHMM、SVMTOP、DAS、SOSUI、TOPCONS、PHOBIUS、MEMSAT - SVM(以下简称为MEMSAT)和SPOCTOPUS。这些程序首先使用四个拓扑结构明确的大型次级转运蛋白家族进行评估,然后对三个最佳程序使用拓扑结构更多样化的通道和载体家族进行进一步评估。在初步研究中,准确性顺序为:SPOCTOPUS > MEMSAT > HMMTOP > TOPCONS > PHOBIUS > TMHMM > SVMTOP > DAS > SOSUI。一些家族,如主要易化子超家族(MFS;转运蛋白分类编号#2.A.1)中的糖转运蛋白家族(2.A.1.1)和氨基酸/多胺/有机阳离子(APC)家族(转运蛋白分类编号#2.A.3),能够被高精度地正确预测,而其他家族,如线粒体载体(MC)(转运蛋白分类编号#2.A.29)和钾离子转运蛋白(Trk)家族(转运蛋白分类编号#2.A.38)预测的准确性则低得多。对于小型、拓扑结构均一的家族,SPOCTOPUS和MEMSAT通常最为可靠,而对于大型、更多样化的超家族,HMMTOP往往具有最高的预测准确性。接下来,我们开发了一个新程序TM - STATS,它可以将基于HMMTOP、SPOCTOPUS或MEMSAT的拓扑预测结果制成表格,用于转运蛋白分类数据库(TCDB;www.tcdb.org)的任何细分(类别、亚类、超家族、家族、亚家族或这些的任意组合),并研究了以下亚类:α型通道蛋白(转运蛋白分类亚类1.A和1.E)、分泌型成孔毒素(转运蛋白分类亚类1.C)和次级载体(亚类2.A)。为每个亚类生成了直方图,并根据亚类、家族和蛋白质对结果进行了分析。这些结果更新了整合膜转运蛋白的拓扑预测,同时也为开发更可靠的拓扑预测程序提供了指导,其中考虑了家族特异性特征。

相似文献

1
Reliability of nine programs of topological predictions and their application to integral membrane channel and carrier proteins.
J Mol Microbiol Biotechnol. 2014;24(3):161-90. doi: 10.1159/000363506. Epub 2014 Jun 27.
2
Predicting the transmembrane secondary structure of ligand-gated ion channels.
Protein Eng. 2002 Jun;15(6):443-54. doi: 10.1093/protein/15.6.443.
3
Expansion of the Major Facilitator Superfamily (MFS) to include novel transporters as well as transmembrane-acting enzymes.
Biochim Biophys Acta Biomembr. 2020 Sep 1;1862(9):183277. doi: 10.1016/j.bbamem.2020.183277. Epub 2020 Mar 20.
5
6
Reliability of transmembrane predictions in whole-genome data.
FEBS Lett. 2002 Dec 18;532(3):415-8. doi: 10.1016/s0014-5793(02)03730-4.
7
Expansion of the APC superfamily of secondary carriers.
Proteins. 2014 Oct;82(10):2797-811. doi: 10.1002/prot.24643. Epub 2014 Jul 31.
8
The amino acid-polyamine-organocation superfamily.
J Mol Microbiol Biotechnol. 2012;22(2):105-13. doi: 10.1159/000338542. Epub 2012 May 22.
10
The transporter classification database.
Nucleic Acids Res. 2014 Jan;42(Database issue):D251-8. doi: 10.1093/nar/gkt1097. Epub 2013 Nov 12.

引用本文的文献

1
Stabilization and structure determination of integral membrane proteins by termini restraining.
Nat Protoc. 2022 Feb;17(2):540-565. doi: 10.1038/s41596-021-00656-5. Epub 2022 Jan 17.
2
Generation of a Polyclonal Antibody against the Mouse Metal Transporter ZIP8.
Antibodies (Basel). 2021 Apr 21;10(2):16. doi: 10.3390/antib10020016.
3
Expansion of the Major Facilitator Superfamily (MFS) to include novel transporters as well as transmembrane-acting enzymes.
Biochim Biophys Acta Biomembr. 2020 Sep 1;1862(9):183277. doi: 10.1016/j.bbamem.2020.183277. Epub 2020 Mar 20.
4
Peptides Derived of Kunitz-Type Serine Protease Inhibitor as Potential Vaccine Against Experimental Schistosomiasis.
Front Immunol. 2019 Nov 1;10:2498. doi: 10.3389/fimmu.2019.02498. eCollection 2019.
5
Haplotypes Confer Different Levels of Sulfite Tolerance When Expressed in a Null Mutant.
Appl Environ Microbiol. 2019 Feb 6;85(4). doi: 10.1128/AEM.02429-18. Print 2019 Feb 15.
7
Molecular and structural characteristics of multidrug resistance-associated protein 7 in Chinese liver fluke Clonorchis sinensis.
Parasitol Res. 2017 Mar;116(3):953-962. doi: 10.1007/s00436-016-5371-0. Epub 2017 Jan 5.
8
Characterization of the Tetraspan Junctional Complex (4JC) superfamily.
Biochim Biophys Acta Biomembr. 2017 Mar;1859(3):402-414. doi: 10.1016/j.bbamem.2016.11.015. Epub 2016 Dec 2.
9
Properties and Phylogeny of 76 Families of Bacterial and Eukaryotic Organellar Outer Membrane Pore-Forming Proteins.
PLoS One. 2016 Apr 11;11(4):e0152733. doi: 10.1371/journal.pone.0152733. eCollection 2016.
10
The human transmembrane proteome.
Biol Direct. 2015 May 28;10:31. doi: 10.1186/s13062-015-0061-x.

本文引用的文献

1
The transporter classification database.
Nucleic Acids Res. 2014 Jan;42(Database issue):D251-8. doi: 10.1093/nar/gkt1097. Epub 2013 Nov 12.
2
The mitochondrial transporter family SLC25: identification, properties and physiopathology.
Mol Aspects Med. 2013 Apr-Jun;34(2-3):465-84. doi: 10.1016/j.mam.2012.05.005. Epub 2012 Dec 23.
4
Identification and functional expression of the mitochondrial pyruvate carrier.
Science. 2012 Jul 6;337(6090):93-6. doi: 10.1126/science.1218530. Epub 2012 May 24.
5
The major facilitator superfamily (MFS) revisited.
FEBS J. 2012 Jun;279(11):2022-35. doi: 10.1111/j.1742-4658.2012.08588.x. Epub 2012 May 8.
6
Mechanism of function of viral channel proteins and implications for drug development.
Int Rev Cell Mol Biol. 2012;294:259-321. doi: 10.1016/B978-0-12-394305-7.00006-9.
7
The role of Drosophila Piezo in mechanical nociception.
Nature. 2012 Feb 19;483(7388):209-12. doi: 10.1038/nature10801.
8
Biological membranes: the importance of molecular detail.
Trends Biochem Sci. 2011 Sep;36(9):493-500. doi: 10.1016/j.tibs.2011.06.007. Epub 2011 Aug 18.
9
Structure of the flagellar motor protein complex PomAB: implications for the torque-generating conformation.
J Bacteriol. 2011 Aug;193(15):3863-70. doi: 10.1128/JB.05021-11. Epub 2011 Jun 3.
10
Structure and function of a membrane component SecDF that enhances protein export.
Nature. 2011 May 11;474(7350):235-8. doi: 10.1038/nature09980.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验