Saucerman Jeffrey J, Brunton Laurence L, Michailova Anushka P, McCulloch Andrew D
Department of Bioengineering, University of California, San Diego, La Jolla, California 92093-0412, USA.
J Biol Chem. 2003 Nov 28;278(48):47997-8003. doi: 10.1074/jbc.M308362200. Epub 2003 Sep 12.
The beta-adrenergic signaling pathway regulates cardiac myocyte contractility through a combination of feedforward and feedback mechanisms. We used systems analysis to investigate how the components and topology of this signaling network permit neurohormonal control of excitation-contraction coupling in the rat ventricular myocyte. A kinetic model integrating beta-adrenergic signaling with excitation-contraction coupling was formulated, and each subsystem was validated with independent biochemical and physiological measurements. Model analysis was used to investigate quantitatively the effects of specific molecular perturbations. 3-Fold overexpression of adenylyl cyclase in the model allowed an 85% higher rate of cyclic AMP synthesis than an equivalent overexpression of beta 1-adrenergic receptor, and manipulating the affinity of Gs alpha for adenylyl cyclase was a more potent regulator of cyclic AMP production. The model predicted that less than 40% of adenylyl cyclase molecules may be stimulated under maximal receptor activation, and an experimental protocol is suggested for validating this prediction. The model also predicted that the endogenous heat-stable protein kinase inhibitor may enhance basal cyclic AMP buffering by 68% and increasing the apparent Hill coefficient of protein kinase A activation from 1.0 to 2.0. Finally, phosphorylation of the L-type calcium channel and phospholamban were found sufficient to predict the dominant changes in myocyte contractility, including a 2.6x increase in systolic calcium (inotropy) and a 28% decrease in calcium half-relaxation time (lusitropy). By performing systems analysis, the consequences of molecular perturbations in the beta-adrenergic signaling network may be understood within the context of integrative cellular physiology.
β-肾上腺素能信号通路通过前馈和反馈机制的组合来调节心肌细胞的收缩性。我们运用系统分析方法来研究该信号网络的组成成分和拓扑结构如何实现对大鼠心室肌细胞兴奋-收缩偶联的神经激素控制。构建了一个将β-肾上腺素能信号与兴奋-收缩偶联整合在一起的动力学模型,并且每个子系统都通过独立的生化和生理学测量进行了验证。模型分析用于定量研究特定分子扰动的影响。在模型中,腺苷酸环化酶3倍过表达所产生的环磷酸腺苷(cAMP)合成速率比同等程度的β1-肾上腺素能受体过表达高85%,并且调节Gsα对腺苷酸环化酶的亲和力是对cAMP产生更有效的调节方式。该模型预测,在最大受体激活情况下,可能只有不到40%的腺苷酸环化酶分子受到刺激,并提出了一个实验方案来验证这一预测。该模型还预测,内源性热稳定蛋白激酶抑制剂可能使基础cAMP缓冲能力增强68%,并使蛋白激酶A激活的表观希尔系数从1.0增加到2.0。最后,发现L型钙通道和受磷蛋白的磷酸化足以预测心肌细胞收缩性的主要变化,包括收缩期钙增加2.6倍(变力性)和钙半松弛时间减少28%(变时性)。通过进行系统分析,可以在整合细胞生理学的背景下理解β-肾上腺素能信号网络中分子扰动的后果。