Suppr超能文献

综合人类心房建模揭示蛋白激酶 A 和 Ca2+/钙调蛋白依赖性蛋白激酶 II 信号的相互作用是心房心律失常发生的关键决定因素。

Integrative human atrial modelling unravels interactive protein kinase A and Ca2+/calmodulin-dependent protein kinase II signalling as key determinants of atrial arrhythmogenesis.

机构信息

Department of Pharmacology, University of California Davis, 451 Health Sciences Drive, Davis, CA 95616, USA.

Institute of Pharmacology, Faculty of Medicine, University Duisburg-Essen, Essen, Germany.

出版信息

Cardiovasc Res. 2023 Oct 24;119(13):2294-2311. doi: 10.1093/cvr/cvad118.

Abstract

AIMS

Atrial fibrillation (AF), the most prevalent clinical arrhythmia, is associated with atrial remodelling manifesting as acute and chronic alterations in expression, function, and regulation of atrial electrophysiological and Ca2+-handling processes. These AF-induced modifications crosstalk and propagate across spatial scales creating a complex pathophysiological network, which renders AF resistant to existing pharmacotherapies that predominantly target transmembrane ion channels. Developing innovative therapeutic strategies requires a systems approach to disentangle quantitatively the pro-arrhythmic contributions of individual AF-induced alterations.

METHODS AND RESULTS

Here, we built a novel computational framework for simulating electrophysiology and Ca2+-handling in human atrial cardiomyocytes and tissues, and their regulation by key upstream signalling pathways [i.e. protein kinase A (PKA), and Ca2+/calmodulin-dependent protein kinase II (CaMKII)] involved in AF-pathogenesis. Populations of atrial cardiomyocyte models were constructed to determine the influence of subcellular ionic processes, signalling components, and regulatory networks on atrial arrhythmogenesis. Our results reveal a novel synergistic crosstalk between PKA and CaMKII that promotes atrial cardiomyocyte electrical instability and arrhythmogenic triggered activity. Simulations of heterogeneous tissue demonstrate that this cellular triggered activity is further amplified by CaMKII- and PKA-dependent alterations of tissue properties, further exacerbating atrial arrhythmogenesis.

CONCLUSIONS

Our analysis reveals potential mechanisms by which the stress-associated adaptive changes turn into maladaptive pro-arrhythmic triggers at the cellular and tissue levels and identifies potential anti-AF targets. Collectively, our integrative approach is powerful and instrumental to assemble and reconcile existing knowledge into a systems network for identifying novel anti-AF targets and innovative approaches moving beyond the traditional ion channel-based strategy.

摘要

目的

心房颤动(房颤)是最常见的临床心律失常,与心房重构有关,表现为心房电生理和 Ca2+处理过程的表达、功能和调节的急性和慢性改变。这些房颤引起的改变相互作用并在空间尺度上传播,形成一个复杂的病理生理网络,使房颤对现有的主要针对跨膜离子通道的药物治疗产生抗性。开发创新的治疗策略需要一种系统的方法来定量分离单个房颤诱导改变的致心律失常贡献。

方法和结果

在这里,我们构建了一种新的计算框架,用于模拟人心房肌细胞和组织的电生理和 Ca2+处理及其调节,这些调节由关键的上游信号通路(即蛋白激酶 A(PKA)和钙/钙调蛋白依赖性蛋白激酶 II(CaMKII))决定,这些信号通路参与房颤的发病机制。构建了心房肌细胞模型群体,以确定亚细胞离子过程、信号成分和调节网络对心房心律失常发生的影响。我们的结果揭示了 PKA 和 CaMKII 之间的一种新的协同相互作用,这种相互作用促进了心房肌细胞的电不稳定性和心律失常触发活动。对异质组织的模拟表明,这种细胞触发活动进一步被 CaMKII 和 PKA 依赖性的组织特性改变放大,进一步加剧了心房心律失常的发生。

结论

我们的分析揭示了应激相关的适应性变化如何在细胞和组织水平上转化为适应性的致心律失常触发因素的潜在机制,并确定了潜在的抗房颤靶点。总的来说,我们的综合方法强大而有工具性,可以将现有的知识整合到一个系统网络中,以识别新的抗房颤靶点和创新的方法,超越传统的基于离子通道的策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0da1/11318383/b6cddd89d823/cvad118_ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验