Suppr超能文献

用于神经心脏调制的多尺度预测性数字孪生。

A multiscale predictive digital twin for neurocardiac modulation.

机构信息

Department of Physiology and Membrane Biology, University of California Davis, Davis, CA, USA.

Department of Mathematics, University of California Davis, Davis, CA, USA.

出版信息

J Physiol. 2023 Sep;601(17):3789-3812. doi: 10.1113/JP284391. Epub 2023 Aug 1.

Abstract

Cardiac function is tightly regulated by the autonomic nervous system (ANS). Activation of the sympathetic nervous system increases cardiac output by increasing heart rate and stroke volume, while parasympathetic nerve stimulation instantly slows heart rate. Importantly, imbalance in autonomic control of the heart has been implicated in the development of arrhythmias and heart failure. Understanding of the mechanisms and effects of autonomic stimulation is a major challenge because synapses in different regions of the heart result in multiple changes to heart function. For example, nerve synapses on the sinoatrial node (SAN) impact pacemaking, while synapses on contractile cells alter contraction and arrhythmia vulnerability. Here, we present a multiscale neurocardiac modelling and simulator tool that predicts the effect of efferent stimulation of the sympathetic and parasympathetic branches of the ANS on the cardiac SAN and ventricular myocardium. The model includes a layered representation of the ANS and reproduces firing properties measured experimentally. Model parameters are derived from experiments and atomistic simulations. The model is a first prototype of a digital twin that is applied to make predictions across all system scales, from subcellular signalling to pacemaker frequency to tissue level responses. We predict conditions under which autonomic imbalance induces proarrhythmia and can be modified to prevent or inhibit arrhythmia. In summary, the multiscale model constitutes a predictive digital twin framework to test and guide high-throughput prediction of novel neuromodulatory therapy. KEY POINTS: A multi-layered model representation of the autonomic nervous system that includes sympathetic and parasympathetic branches, each with sparse random intralayer connectivity, synaptic dynamics and conductance based integrate-and-fire neurons generates firing patterns in close agreement with experiment. A key feature of the neurocardiac computational model is the connection between the autonomic nervous system and both pacemaker and contractile cells, where modification to pacemaker frequency drives initiation of electrical signals in the contractile cells. We utilized atomic-scale molecular dynamics simulations to predict the association and dissociation rates of noradrenaline with the β-adrenergic receptor. Multiscale predictions demonstrate how autonomic imbalance may increase proclivity to arrhythmias or be used to terminate arrhythmias. The model serves as a first step towards a digital twin for predicting neuromodulation to prevent or reduce disease.

摘要

心脏功能受自主神经系统(ANS)的紧密调节。交感神经系统的激活通过增加心率和每搏输出量来增加心输出量,而副交感神经刺激则立即降低心率。重要的是,心脏自主控制的失衡与心律失常和心力衰竭的发展有关。理解自主刺激的机制和影响是一个主要的挑战,因为心脏不同区域的突触会导致心脏功能的多种变化。例如,窦房结(SAN)上的神经突触会影响起搏,而收缩细胞上的突触会改变收缩和心律失常易感性。在这里,我们提出了一种多尺度的神经心脏建模和模拟器工具,该工具可预测交感和副交感 ANS 分支对心脏 SAN 和心室心肌的传出刺激的影响。该模型包括 ANS 的分层表示,并再现了实验测量的放电特性。模型参数是从实验和原子模拟中得出的。该模型是数字双胞胎的第一个原型,可用于在从亚细胞信号到起搏频率到组织水平反应的所有系统尺度上进行预测。我们预测了自主失衡引起心律失常的条件,并可以进行修改以预防或抑制心律失常。总之,该多尺度模型构成了一个预测性数字双胞胎框架,用于测试和指导新型神经调节治疗的高通量预测。关键点:自主神经系统的多层次模型表示,包括交感和副交感分支,每个分支都具有稀疏的随机层内连接、突触动力学和基于电导的积分和放电神经元,生成与实验非常吻合的放电模式。神经心脏计算模型的一个关键特征是自主神经系统与起搏和收缩细胞之间的连接,其中起搏频率的改变驱动收缩细胞中电信号的产生。我们利用原子尺度分子动力学模拟来预测去甲肾上腺素与β肾上腺素能受体的结合和解离速率。多尺度预测表明,自主失衡如何增加心律失常的倾向,或者如何用于终止心律失常。该模型是开发用于预测神经调节以预防或减少疾病的数字双胞胎的第一步。

相似文献

2
Zebrafish heart as a model to study the integrative autonomic control of pacemaker function.斑马鱼心脏作为研究起搏器功能综合自主控制的模型。
Am J Physiol Heart Circ Physiol. 2016 Sep 1;311(3):H676-88. doi: 10.1152/ajpheart.00330.2016. Epub 2016 Jun 24.

引用本文的文献

7
Digital Twins of Biological Systems: A Narrative Review.生物系统的数字孪生:一篇综述
IEEE Open J Eng Med Biol. 2024 Jul 12;5:670-677. doi: 10.1109/OJEMB.2024.3426916. eCollection 2024.

本文引用的文献

1
Predicting Biomolecular Binding Kinetics: A Review.预测生物分子结合动力学:综述。
J Chem Theory Comput. 2023 Apr 25;19(8):2135-2148. doi: 10.1021/acs.jctc.2c01085. Epub 2023 Mar 29.
3
Autonomic nervous system and arrhythmias in structural heart disease.自主神经系统与结构性心脏病中的心律失常。
Auton Neurosci. 2022 Dec;243:103037. doi: 10.1016/j.autneu.2022.103037. Epub 2022 Sep 24.
7
Untangling Peripheral Sympathetic Neurocircuits.解析外周交感神经回路
Front Cardiovasc Med. 2022 Feb 10;9:842656. doi: 10.3389/fcvm.2022.842656. eCollection 2022.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验