Mandal Atin K, Argüello José M
Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, 100 Institute Road, Worcester, Massachusetts 01609, USA.
Biochemistry. 2003 Sep 23;42(37):11040-7. doi: 10.1021/bi034806y.
CopA, a thermophilic membrane ATPase from Archaeoglobus fulgidus, drives the outward movement of Cu(+) or Ag(+) [Mandal et al. (2002) J. Biol. Chem. 277, 7201-7208]. This, as other P(IB)-ATPases, is characterized by a putative metal binding sequence (C(380)PC(382)) in its sixth transmembrane fragment and cytoplasmic metal binding sequences in its NH(2)- and COOH-terminal ends (C(27)AMC(30) and C(751)HHC(754)). Using isolated CopA, we have studied the functional role of these three putative metal binding domains. Replacement of transmembrane Cys residues by Ala results in nonfunctional enzymes that are unable to hydrolyze ATP. However, the CPC --> APA substituted enzyme binds ATP, indicating its correct folding and suggesting that enzyme turnover is prevented by the lack of metal binding to the transmembrane site. Replacement of C-terminal Cys by Ala (C(751,754)A) has no significant effect on ATPase activity, enzyme phosphorylation, apparent binding affinities of ligands, or E1-E2 equilibrium. In contrast, replacement of Cys in the N-terminal metal binding domain (N-MBD) (C(27,30)A) leads to 40% reduction in enzyme turnover. The C(27,30)A enzyme binds Cu(+), Ag(+), and ATP with the same high apparent affinities as the wild-type CopA. Evidence that N-MBD disruption has no effect on the E1-E2 equilibrium is provided by the normal interaction of ATP acting with low affinity and the unaffected IC(50) for vanadate inhibition observed in the C(27,30)A-substituted enzyme. However, replacement C(27,30)A slowed the dephosphorylation of the E2P(metal) form of the enzyme, suggesting a reduction in the rate of metal release. Other investigators have shown the Cu-dependent interaction of isolated N-MBDs from the Wilson disease Cu-ATPase with the ATP binding cytoplasmic domain [Tsivkovskii et al. (2001) J. Biol. Chem. 276, 2234-2242]. Therefore, the data suggest a regulatory mechanism in which the Cu-dependent N-MBD/ATP binding domain interaction would accelerate cation release, the enzyme rate-limiting step, and consequently Cu(+) transport.
CopA是一种来自嗜热栖热菌的嗜热膜ATP酶,驱动Cu(+)或Ag(+)的外向运输[Mandal等人(2002年)《生物化学杂志》277, 7201 - 7208]。与其他P(IB)-ATP酶一样,它的特征是在其第六个跨膜片段中有一个假定的金属结合序列(C(380)PC(382)),以及在其NH(2)-和COOH末端有细胞质金属结合序列(C(27)AMC(30)和C(751)HHC(754))。我们使用分离出的CopA研究了这三个假定金属结合结构域的功能作用。将跨膜半胱氨酸残基替换为丙氨酸会导致无功能的酶,无法水解ATP。然而,CPC --> APA替换的酶能结合ATP,表明其正确折叠,并暗示由于缺乏与跨膜位点的金属结合而阻止了酶的周转。将C末端半胱氨酸替换为丙氨酸(C(751,754)A)对ATP酶活性、酶磷酸化、配体的表观结合亲和力或E1 - E2平衡没有显著影响。相比之下,将N末端金属结合结构域(N - MBD)中的半胱氨酸替换为丙氨酸(C(27,30)A)会导致酶周转减少40%。C(27,30)A酶与野生型CopA一样,以相同的高表观亲和力结合Cu(+)、Ag(+)和ATP。在C(27,30)A替换的酶中,ATP以低亲和力起作用时的正常相互作用以及观察到的钒酸盐抑制的IC(50)未受影响,这提供了证据表明N - MBD破坏对E1 - E2平衡没有影响。然而,C(27,30)A替换减缓了酶的E2P(金属)形式的去磷酸化,表明金属释放速率降低。其他研究人员已经表明,来自威尔逊病铜ATP酶的分离出的N - MBD与ATP结合细胞质结构域之间存在铜依赖性相互作用[Tsivkovskii等人(2001年)《生物化学杂志》276, 2234 - 2242]。因此,数据表明一种调节机制,其中铜依赖性的N - MBD/ATP结合结构域相互作用会加速阳离子释放,这是酶的限速步骤,从而促进Cu(+)运输。