Suppr超能文献

Activation of NADPH oxidase in human neutrophils permeabilized with Staphylococcus aureus alpha-toxin. A lower Km when the enzyme is activated in situ.

作者信息

Bauldry S A, Nasrallah V N, Bass D A

机构信息

Department of Pulmonary and Critical Care Medicine, Bowman Gray School of Medicine, Wake Forest University, Winston-Salem, North Carolina 27157.

出版信息

J Biol Chem. 1992 Jan 5;267(1):323-30.

PMID:1309741
Abstract

The NADPH oxidase is a multicomponent enzyme system that produces the reduced oxygen species essential for bacterial killing by polymorphonuclear leukocytes (PMN). Study of the oxidase has typically been carried out in cell-free systems in which Km values of 20-150 microM NADPH have been reported. However, when compared with affinities reported for other flavoprotein dehydrogenases and when considering the cellular concentration of NADPH/NADP+ of approximately 35 microM, the reported affinity of the oxidase for NADPH appears low. To investigate this apparent discrepancy we have studied the kinetics of NADPH oxidase activation in situ in human PMN permeabilized with Staphylococcus aureus alpha-toxin. alpha-Toxin permeabilization of human PMN did not initiate NADPH oxidase activation at physiologic concentrations of NADPH. If permeabilized cells were stimulated with 1 microM formyl-methionyl-leucyl-phenylalanine, 10 microM guanosine 5'-O-(3-thiotriphosphate), 0.5 mM Ca2+, 5 micrograms/ml cytochalasin B in the presence of varying concentrations of NADPH, we were able to demonstrate activation of the oxidase complex as shown by superoxide dismutase-inhibitable reduction of cytochrome c. In this system we determined that the Km for oxidase activation was 4-7 microM NADPH, a 4-10-fold decrease from reported values. The oxidase was the enzyme being studied as shown by the absence of enzymatic activity in patients with chronic granulomatous disease. In addition, if the enzyme was initially activated in permeabilized cells, the cells homogenized, and the Km for the oxidase determined in a cell-free system, the observed Km reverted to previously reported values (36 microM). These results indicate that NADPH oxidase, studied in situ, has a significantly higher substrate affinity than that observed in isolated membranes and, moreover, indicate that substrate affinity is optimal for catalysis at reported concentrations of cytosolic NADPH.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验