Douse M A, Mitchell G S
Department of Comparative Biosciences, University of Wisconsin, Madison 53706.
Respir Physiol. 1992 Jan;87(1):63-76. doi: 10.1016/0034-5687(92)90100-b.
Reptiles increase ventilation during hypercapnia at a constant temperature. In this study, the contributions of vagal vs non-vagal receptors to CO2 ventilatory responses were investigated in 16 sedated Alligator mississippiensis (25 mg/kg pentobarbital; 3 days prior to data collection). Four animals served as controls to assess the effects of time and/or anesthetic drift on ventilation and blood gases; significant ventilatory drift was not detected during the observation period. The effects of bilateral vagotomy on CO2 ventilatory responses were determined during spontaneous breathing (n = 6) and unidirectional ventilation (UDV; n = 6) at two body temperatures (Tb = 30 and 20 degrees C). Resting PaCO2, minute ventilation (VI), tidal volume (VT) and breathing frequency (f) were elevated at 30 degrees C relative to 20 degrees C in spontaneously breathing alligators. Increasing inspired CO2 to 5% increased PaCO2, f, VT and VI at both levels of Tb. Ventilatory sensitivity to CO2 (S = delta VI/delta PaCO2) was higher at 30 degrees C with a temperature coefficient (Q10) of 2.3. Vagotomy increased PaCO2 and VT, decreased f and had no effect on VI at either Tb. After vagotomy, hypercapnia had no effects on ventilation. When CO2 feedback loops were opened by UDV at a high flow rate (greater than 2 L/min), Tb had no effects on ventilatory efforts at constant PCO2, but hypercapnia significantly increased f, VT and VI. S was variable with a Q10 of 2.1. After vagotomy, a significant CO2-ventilatory response remained during UDV, but S was unaffected by Tb (Q10 = 0.8). The results indicate that non-vagal chemoreceptors contribute to CO2 ventilatory responses in alligators, although their contribution following vagotomy is evident only during unidirectional ventilation. Although tentative, the data also suggest that CO2-sensitive vagal receptors may be necessary for the temperature dependency of S.