Suppr超能文献

听觉神经放电率的贝叶斯模型选择与最小描述长度估计

Bayesian model selection and minimum description length estimation of auditory-nerve discharge rates.

作者信息

Mark K E, Miller M I

机构信息

Department of Electrical Engineering, Washington University, St. Louis 63130.

出版信息

J Acoust Soc Am. 1992 Feb;91(2):989-1002. doi: 10.1121/1.402504.

Abstract

Auditory-nerve fiber discharges are modeled as self-exciting point processes with intensity given by the product of a stimulus-related function and a refractory-related function. Previous methods of estimating these two functions, based on the maximum-likelihood principle, have the problem of estimating more parameters than the data can support. A new procedure, based on a Bayes criterion for choosing the complexity of the model in addition to estimating the parameters, solves the over-parametrization problem. This procedure is seen to relate asymptotically to Rissanen's minimum description length (MDL) criterion. A performance comparison of the MDL procedure with previous maximum-likelihood algorithms promotes the adoption of the MDL procedure for simultaneous estimation of the stimulus and recovery properties of auditory-nerve discharge.

摘要

听觉神经纤维放电被建模为自激发点过程,其强度由刺激相关函数和不应期相关函数的乘积给出。以前基于最大似然原理估计这两个函数的方法存在估计参数数量超过数据所能支持数量的问题。一种新的程序,除了估计参数外,还基于贝叶斯准则来选择模型的复杂度,解决了过度参数化问题。该程序被认为渐近地与里桑宁的最小描述长度(MDL)准则相关。将MDL程序与以前的最大似然算法进行性能比较,促使采用MDL程序来同时估计听觉神经放电的刺激和恢复特性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验