Johnson D H
Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005-1892, USA.
J Comput Neurosci. 1996 Dec;3(4):275-99. doi: 10.1007/BF00161089.
In most neural systems, neurons communicate via sequences of action potentials. Contemporary models assume that the action potentials' times of occurrence rather than their waveforms convey information. The mathematical tool for describing sequences of events occurring in time and/or space is the theory of point processes. Using this theory, we show that neural discharge patterns convey time-varying information intermingled with the neuron's response characteristics. We review the basic techniques for analyzing single-neuron discharge patterns and describe what they reveal about the underlying point process model. By applying information theory and estimation theory to point processes, we describe the fundamental limits on how well information can be represented by and extracted from neural discharges. We illustrate applying these results by considering recordings from the lower auditory pathway.
在大多数神经系统中,神经元通过动作电位序列进行通信。当代模型假定动作电位的发生时间而非其波形传递信息。用于描述在时间和/或空间中发生的事件序列的数学工具是点过程理论。利用这一理论,我们表明神经放电模式传递与时变信息交织在一起的神经元反应特性。我们回顾了分析单神经元放电模式的基本技术,并描述了它们揭示的关于潜在点过程模型的内容。通过将信息理论和估计理论应用于点过程,我们描述了神经放电能够多好地表示和提取信息的基本限制。我们通过考虑来自听觉传导通路下部的记录来说明这些结果的应用。