Suppr超能文献

Retinoic acid receptor expression in human skin keratinocytes and dermal fibroblasts in vitro.

作者信息

Redfern C P, Todd C

机构信息

Department of Dermatology, Medical School, University of Newcastle, UK.

出版信息

J Cell Sci. 1992 May;102 ( Pt 1):113-21. doi: 10.1242/jcs.102.1.113.

Abstract

Retinoic acid is essential for the normal differentiation of epithelia but its cellular function is obscure. The expression patterns of retinoic acid receptors (RARs) in skin cell types may give an insight into the role of retinoic acid in skin. We have compared the patterns of RAR expression in human keratinocytes and dermal fibroblasts in vitro, and studied the effects of retinoic acid on RAR expression. RAR-alpha and RAR-gamma were expressed in keratinocytes and fibroblasts: RAR-gamma was expressed at similar levels in both cell types but RAR-alpha was more abundant in fibroblasts. There were no differences in expression of either RAR-alpha or RAR-gamma between stratifying (high-calcium medium) and proliferating (low-calcium medium) keratinocytes and expression of these RARs was unaffected by retinoic acid. RAR-beta was undetectable in keratinocytes. In the majority of fibroblast cell lines, RAR-beta transcripts were either undetectable or expressed at a low level. Retinoic acid at low concentrations (10(-10) to 10(-9) M) rapidly induced the expression of RAR-beta. Cyclic adenosine monophosphate (cAMP) analogues inhibit RAR-beta induction in teratocarcinoma cells. However, dibutyryl-cAMP did not affect RAR-beta induction in fibroblasts. Forskolin, an adenylate cyclase activator, and the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (IBMX) decreased constitutive RAR-beta mRNA levels but did not block induction of RAR-beta by retinoic acid. Since intracellular cAMP levels were only increased detectably in response to forskolin, the reduction in constitutive levels of RAR-beta mRNA may be mediated by mechanisms other than via cAMP.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验