Shuman S
Program in Molecular Biology, Sloan-Kettering Institute, New York, New York 10021.
J Biol Chem. 1992 Aug 25;267(24):16755-8.
The ability of a eukaryotic DNA topoisomerase I to catalyze DNA rearrangements was examined in vitro using defined substrates and purified enzyme. Site-specific DNA strand cleavage by vaccinia topoisomerase I across from a nick generated double-strand breaks that could be religated to a heterologous blunt-ended duplex DNA regardless of the sequence of the acceptor molecule. Topoisomerase bound covalently at internal positions could religate the bound strand to an incoming acceptor provided that DNA molecule had sequence homology to the region 3' of the scissile bond. These end-joining reactions suggest two potential modes of topoisomerase-mediated recombination that differ in their requirements for DNA homology.