Suppr超能文献

对取自小细胞肺癌短期和长期存活者的诊断性活检材料进行的免疫组织化学研究。

An immunohistochemical investigation of diagnostic biopsy material taken from short and long term survivors with small cell lung cancer.

作者信息

Bobrow L G, Hirsch F R, Hay F G, Happerfield L, Skov B G, Law K, Leonard R C, Souhami R L

机构信息

ICRF Human Tumour Immunology Group, University College and Middlesex School of Medicine, London, UK.

出版信息

Br J Cancer. 1992 Sep;66(3):547-51. doi: 10.1038/bjc.1992.311.

Abstract

An immunohistochemical study has been carried out on fibre optic-biopsy specimens from patients with small cell lung cancer (SCLC) who had either died within 3 months, or who had survived more than 2 years. Long term survivors (LTS) were identified from completed clinical trials at major UK centres and were matched for age and sex within the trial with short term survivors (STS). The panel of immunohistochemical markers included those previously reported to be associated with prognosis, and reagents representative of both neuroendocrine and epithelial differentiation. A preliminary screen of 17 antibodies identified 11 as consistently reactive on paraffin-embedded material using streptavadin-biotin immunoperoxidase. Of 186 identified patients, 110 biopsy samples were retrieved. Of these, 70 gave sufficient material for analysis. All sections were scored by three observers without knowledge of the prognosis. The analysis failed to identify any antigen whose expression was correlated with prognosis. We conclude that, in fibre-optic biopsy specimens, immunohistochemical analysis does not add prognostic information in SCLC.

摘要

对小细胞肺癌(SCLC)患者的纤维光学活检标本进行了一项免疫组织化学研究,这些患者要么在3个月内死亡,要么存活超过2年。长期存活者(LTS)是从英国主要中心完成的临床试验中确定的,并在试验中与短期存活者(STS)进行年龄和性别的匹配。免疫组织化学标志物 panel 包括先前报道与预后相关的标志物,以及代表神经内分泌和上皮分化的试剂。对17种抗体的初步筛选确定了11种在使用链霉亲和素 - 生物素免疫过氧化物酶的石蜡包埋材料上始终具有反应性。在186名已识别的患者中,检索到110份活检样本。其中,70份提供了足够的材料进行分析。所有切片由三名观察者在不知道预后的情况下进行评分。分析未能识别出任何其表达与预后相关的抗原。我们得出结论,在纤维光学活检标本中,免疫组织化学分析不能为小细胞肺癌提供预后信息。

相似文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验