Malejka-Giganti D, Ritter C L, Decker R W
Laboratory for Cancer Research, Veterans Affairs Medical Center, Minneapolis, Minnesota 55417.
Chem Res Toxicol. 1992 Jul-Aug;5(4):520-7. doi: 10.1021/tx00028a010.
Chemical or enzymatic oxidations of the carcinogen N-hydroxy-N-(2- fluorenyl)benzamide (N-OH-2-FBA) were investigated under the conditions facilitating one-electron oxidation or oxidative cleavage of N-hydroxy-N-(2-fluorenyl)acetamide (N-OH-2-FAA). HPLC methods were developed for separation and quantitation of the above hydroxamic acids and their respective oxidation products. To identify the products of oxidation of N-OH-2-FBA, N-(benzoyloxy)-2-FBA (N-BzO-2-FBA) was synthesized and shown to undergo ortho rearrangement to 1- and 3-BzO-2-FBA. Oxidation of N-OH-2-FBA (4.88 mM) with alkaline K3Fe(CN)6 in benzene was complete and yielded equimolar amounts of 2-nitrosofluorene (2-NOF) and the ester (chiefly N-BzO-2-FBA), indicative of one-electron oxidation to nitroxyl free radical which undergoes bimolecular dismutation. However, one-electron oxidation of N-OH-2-FBA (30 or 10 microM) by horseradish peroxidase/H2O2 at pH 7 or myeloperoxidase/H2O2 at pH 6.5 yielded only approximately 10% as much product as N-OH-2-FAA (30 microM). The addition of 0.1 mM Br- +/- 0.1 M Cl- at pH 4 to 6.5 increased 2-NOF formation in MPO/H2O2-catalyzed oxidations. Simulations of these oxidations with HOCl/Cl- or HOBr/Br- showed that the latter was more efficient, converting N-OH-2-FAA almost completely and less than or equal to 62% of N-OH-2-FBA to 2-NOF. The amounts of the ester (N- and o-BzO-2-FBA), which by itself did not contribute to 2-NOF formation or significant substrate regeneration, indicated that approximately 10% of 2-NOF originated from one-electron oxidation.(ABSTRACT TRUNCATED AT 250 WORDS)
在有利于N-羟基-N-(2-芴基)乙酰胺(N-OH-2-FAA)单电子氧化或氧化裂解的条件下,对致癌物N-羟基-N-(2-芴基)苯甲酰胺(N-OH-2-FBA)的化学或酶促氧化进行了研究。开发了用于分离和定量上述异羟肟酸及其各自氧化产物的HPLC方法。为了鉴定N-OH-2-FBA的氧化产物,合成了N-(苯甲酰氧基)-2-FBA(N-BzO-2-FBA),并表明其会发生邻位重排生成1-和3-BzO-2-FBA。在苯中用碱性K3Fe(CN)6氧化N-OH-2-FBA(4.88 mM)反应完全,生成等摩尔量的2-亚硝基芴(2-NOF)和酯(主要是N-BzO-2-FBA),这表明发生了单电子氧化生成硝酰自由基,该自由基会进行双分子歧化反应。然而,在pH 7时辣根过氧化物酶/H2O2或在pH 6.5时髓过氧化物酶/H2O2对N-OH-2-FBA(30或10 microM)的单电子氧化产生的产物量仅约为N-OH-2-FAA(30 microM)的10%。在pH 4至6.5时添加0.1 mM Br- +/- 0.1 M Cl-会增加MPO/H2O2催化氧化中2-NOF的形成。用HOCl/Cl-或HOBr/Br-对这些氧化反应进行模拟表明,后者更有效,能将N-OH-2-FAA几乎完全转化,将N-OH-2-FBA转化为2-NOF的比例小于或等于62%。酯(N-和邻-BzO-2-FBA)本身对2-NOF的形成或显著的底物再生没有贡献,其含量表明约10%的2-NOF源自单电子氧化。(摘要截选至250字)