Chelvanayagam G, Reich Z, Bringas R, Argos P
European Molecular Bioplogy Laboratory, Heidelberg, Germany.
J Mol Biol. 1992 Oct 5;227(3):901-16. doi: 10.1016/0022-2836(92)90230-h.
Recent 1H nuclear magnetic resonance (n.m.r.) hydrogen exchange experiments on five different proteins have delineated the secondary structures formed in trapped, partially folded intermediates. The early forming structural elements are identifiable through a technique described in this work to predict folding pathways. The method assumes that the sequential selection of structural fragments such as alpha-helices and beta-strands involved in the folding process is founded upon the maximal burial of solvent accessible surface from both the formation of internal structure and substructure association. The substructural elements were defined objectively by major changes in main-chain direction. The predicted folding pathways are in complete correspondence with the n.m.r. results in that the formed structural fragments found in the folding intermediates are those predicted earliest in the pathways. The technique was also applied to proteins of known tertiary structure and with fold similar to one of the five proteins examined by 1H n.m.r. The pathways for these structures also showed general consistency with the n.m.r. observations, suggesting conservation of a secondary structural framework or molten globule about which folding nucleates and proceeds.