Wofsy C, Goldstein B
Department of Mathematics and Statistics, University of New Mexico, Albuquerque 87131.
Math Biosci. 1992 Nov;112(1):115-54. doi: 10.1016/0025-5564(92)90090-j.
Aggregation of cell surface receptors, with each other or with other membrane proteins, occurs in a variety of experimental systems. The list of systems where receptor aggregation appears to be important in understanding ligand binding and cellular responses is growing rapidly. In this paper we explore the interpretation of equilibrium binding data for aggregating receptor systems. The Scatchard plot is a widely used tool for analyzing equilibrium binding data. The shape of the Scatchard plot is often interpreted in terms of multiple noninteracting receptor populations. Such an analysis does not provide a framework for investigating the role of receptor aggregation and will be misleading if there is a relation between receptor aggregation and ligand binding. We present a general model for the equilibrium binding of a ligand with any number of aggregating receptor populations and derive theoretical expressions for observable Scatchard plot features. These can be used to test particular models and estimate model parameters. We develop particular models and apply the general results in the cases of six aggregating receptor systems where ligand binding and receptor aggregation are related: cross-linking of monovalent cell surface proteins by monoclonal antibodies, cross-linking of cell surface antibodies by bivalent ligand, antibody-induced co-cross-linking of cell surface antibodies and Fc gamma receptors, ligand-enhanced aggregation of identical epidermal growth factor receptors, aggregation of heterologous receptors for interleukin 2 to form a high-affinity receptor, and association of receptors, including those for interleukins 5 and 6, with nonbinding accessory proteins that influence receptor affinity or effector function.