Suppr超能文献

Action potential refractory period in axonal demyelination: a computer simulation.

作者信息

Quandt F N, Davis F A

机构信息

Multiple Sclerosis Research Center, Rush University, Chicago, IL 60612.

出版信息

Biol Cybern. 1992;67(6):545-52. doi: 10.1007/BF00198761.

Abstract

Axonal demyelination leads to an increase in the refractory period for propagation of the action potential. Computer simulations were used to investigate the mechanism by which changes in the passive properties of the internodal membrane increase the refractory period. The properties of the voltage dependent ion channels can be altered to restore conduction in demyelinated nerve fibers. The ability of these alterations to decrease the refractory period of demyelinated model nerve fibers was compared. The model nerve fiber contained six nodes. The action potential was stimulated at node one and propagated to node six. The internode between nodes three and four was demyelinated in a graded manner. The absolute refractory period for propagation of the action potential through the demyelinated internode increased as the number of myelin wraps was reduced to less than 25% of the normal value. The increase in refractory period was found to be due to a reduction in the rate or repolarization of the action potential at node three. The delay in repolarization reduced the rate of recovery of inactivated Na channels and slowed the closing of K channels. The rate of repolarization of node three was reduced by the conduction delay for the depolarization of node four caused by demyelination of the preceding internode. In these simulations the increase in refractory period due to demyelination was eliminated by slowing the onset of Na channel inactivation. A small reduction of the K conductance also decreased the refractory period. However, larger reductions eliminated this effect.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验