Suppr超能文献

植物细胞中片层系统形态发生的一种可能机制。

A possible mechanism for the morphogenesis of lamellar systems in plant cells.

作者信息

HODGE A J, MCLEAN J D, MERCER F V

出版信息

J Biophys Biochem Cytol. 1956 Sep 25;2(5):597-608. doi: 10.1083/jcb.2.5.597.

Abstract

A mechanism for the formation of lamellar systems in the plant cell has been proposed as a result of electron microscope observations of young and mature cells of Nitella cristata and the plastids of Zea mays in normal plants, developing plants, and certain mutant types. The results are compatible with the concept that lamellar structures arise by the fusion or coalescence of small vesicular elements, giving rise initially to closed double membrane Structures (cisternae). In the chloroplasts of Zea, the cisternae subsequently undergo structural transformations to give rise to a compound layer structure already described for the individual chloroplast lamellae. During normal development, the minute vesicles in the young chloroplast are aggregated into one or more dense granular bodies (prolamellar bodies) which often appear crystalline. Lamellae grow out from these bodies. In fully etiolated leaves lamellae are absent and the prolamellar bodies become quite large, presumably because of inhibition of the fusion step which appears to require chlorophyll. Lamellae develop rapidly on exposure of the plant to light, and subsequent development closely parallels that seen under normal conditions. The plastids of white and very pale green mutants of Zea similarly lack lamellae and contain only vesicular elements. A specialized peripheral zone immediately below the double limiting membrane in Zea chloroplasts appears to be responsible for the production of vesicles. These may be immediately converted to lamellae under normal conditions, but accumulate to form a prolamellar body if lamellar formation is prevented, as in the case of etiolation and chlorophyll-deficient mutation, or when the rate of lamellar formation is slower than that of the production of precursor material (as appears to be the case in the early stages of normal development).

摘要

通过对正常植株、发育中植株及某些突变类型的冠果槽杆藻幼细胞和成熟细胞以及玉米质体进行电子显微镜观察,已提出一种植物细胞中片层系统形成的机制。这些结果与下述概念相符,即片层结构由小泡状成分融合或合并产生,最初形成封闭的双膜结构(潴泡)。在玉米叶绿体中,潴泡随后经历结构转变,形成已描述过的单个叶绿体片层的复合层结构。在正常发育过程中,幼叶绿体中的微小泡聚集成一个或多个密集的颗粒体(原片层体),这些颗粒体常呈晶体状。片层从这些颗粒体长出。在完全黄化的叶片中,片层不存在,原片层体变得相当大,推测是由于融合步骤受到抑制,而这一步骤似乎需要叶绿素。植株曝光后片层迅速发育,随后的发育与正常条件下所见的情况非常相似。玉米白色和浅绿色突变体的质体同样缺乏片层,仅含有泡状成分。玉米叶绿体中紧邻双限制膜下方的一个特殊外周区域似乎负责小泡的产生。在正常条件下,这些小泡可能立即转化为片层,但如果片层形成受到阻止,如在黄化和叶绿素缺乏突变的情况下,或者当片层形成速率慢于前体物质产生速率时(正常发育早期似乎就是这种情况),小泡就会积累形成原片层体。

相似文献

1
A possible mechanism for the morphogenesis of lamellar systems in plant cells.
J Biophys Biochem Cytol. 1956 Sep 25;2(5):597-608. doi: 10.1083/jcb.2.5.597.
2
The effect of low temperature on the development of the lamellar system in chloroplasts.
J Biophys Biochem Cytol. 1960 Oct;8(2):529-38. doi: 10.1083/jcb.8.2.529.
4
Structure and development of the chloroplast in Chlamydomonas. I. The normal green cell.
J Biophys Biochem Cytol. 1957 May 25;3(3):463-88. doi: 10.1083/jcb.3.3.463.
5
Effects of the physical environment on some lipoprotein layer systems and observations on their morphogenesis.
J Biophys Biochem Cytol. 1956 Jul 25;2(4 Suppl):221-8. doi: 10.1083/jcb.2.4.221.
7
ULTRASTRUCTURE OF THE LAMELLAE AND GRANA IN THE CHLOROPLASTS OF ZEA MAYS L.
J Biophys Biochem Cytol. 1955 Nov 25;1(6):605-14. doi: 10.1083/jcb.1.6.605.
8
The ultrastructure of the vitelline body in the oocyte of the spider Tegenaria parietina.
J Biophys Biochem Cytol. 1957 Nov 25;3(6):977-84. doi: 10.1083/jcb.3.6.977.
10
Observations on cellular structures of Porphyridium cruentum.
J Biophys Biochem Cytol. 1959 Mar 25;5(2):289-94. doi: 10.1083/jcb.5.2.289.

引用本文的文献

2
Changes in plastid envelope polypeptides during chloroplast development.
Planta. 1974 Jan;121(3):273-82. doi: 10.1007/BF00389327.
3
CO(2) Assimilation by Etiolated Hordeum vulgare Seedlings during the Onset of Photosynthesis.
Plant Physiol. 1966 Jan;41(1):115-8. doi: 10.1104/pp.41.1.115.
6
[Development and structure of proplastids].
J Biophys Biochem Cytol. 1959 Dec;6(3):507-12.
7
Centrioles and the formation of rudimentary cilia by fibroblasts and smooth muscle cells.
J Cell Biol. 1962 Nov;15(2):363-77. doi: 10.1083/jcb.15.2.363.
8
Chloroplast development in Ochromonas danica.
J Cell Biol. 1962 Nov;15(2):343-61. doi: 10.1083/jcb.15.2.343.
9
Fine structure of the photosynthetic bacterium Rhodomicrobium vannielii.
J Biophys Biochem Cytol. 1961 Nov;11(2):469-83. doi: 10.1083/jcb.11.2.469.
10
Observations on sperm penetration in the rat.
J Biophys Biochem Cytol. 1961 Jun;10(2):275-83. doi: 10.1083/jcb.10.2.275.

本文引用的文献

1
A study of fixation for electron microscopy.
J Exp Med. 1952 Mar;95(3):285-98. doi: 10.1084/jem.95.3.285.
2
[Crystal-grid structure of granum of young chloroplasts of Chlorophytum].
Exp Cell Res. 1954 Nov;7(2):606-8. doi: 10.1016/s0014-4827(54)80114-5.
3
Chloroplast structure in green and yellow strains of Chlamydomonas.
Exp Cell Res. 1954 Nov;7(2):584-8. doi: 10.1016/s0014-4827(54)80107-8.
4
The formation from the Schwann cell surface of myelin in the peripheral nerves of chick embryos.
Exp Cell Res. 1954 Nov;7(2):558-62. doi: 10.1016/s0014-4827(54)80098-x.
7
Electron microscopy of basophilic components of cytoplasm.
J Histochem Cytochem. 1954 Sep;2(5):346-75. doi: 10.1177/2.5.346.
8
An electron microscope study of two flagellates, chloroplast structure and variation.
Ann N Y Acad Sci. 1953 Oct 14;56(5):873-89. doi: 10.1111/j.1749-6632.1953.tb30266.x.
10
Chlorophyll monolayers in chloroplasts.
J Gen Physiol. 1953 Sep;37(1):111-20. doi: 10.1085/jgp.37.1.111.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验