Suppr超能文献

运动神经元动作电位产生的步骤。

Steps in the production of motoneuron spikes.

作者信息

FUORTES M G, FRANK K, BECKER M C

出版信息

J Gen Physiol. 1957 May 20;40(5):735-52. doi: 10.1085/jgp.40.5.735.

Abstract
  1. Spikes evoked in spinal motoneurons by antidromic stimulation normally present an inflection in their rising phase. A similar inflection is present in spikes evoked by direct stimulation with short pulses. 2. In either case the inflection becomes less prominent if the motoneuron membrane is depolarized and more prominent when it is hyperpolarized. Both antidromic and direct spikes may fall from the level of the inflection thus evoking a "small spike" only if sufficient hyperpolarization is applied. Similar events occur when antidromic or direct spikes are evoked in the aftermath of a preceding spike. 3. Spikes evoked by direct stimuli applied shortly after firing of a "small spike" may also become partially blocked at a critical stimulus interval. At shorter intervals, however, spike size again increases and no inflection can be detected in the rising phase. 4. When a weak direct stimulus evokes a small spike only, a stronger stimulus may evoke a full spike. Curves of the strength of the stimuli required for eliciting small or full spikes have been constructed in a number of conditions. 5. To explain the results it is assumed that threshold of the major portions of the soma membrane is higher than the threshold of the axon, the transition occurring over a finite area near the axon hillock. Following antidromic or direct stimulation, soma excitation is then initiated in the region of the axon hillock. Spread of activity towards the soma occurs at first slowly and with low safety factor. At this stage block may be easily evoked. Safety factor for propagation increases rapidly as the growing impulse involves larger and larger areas of the soma membrane so that, once the critical areas are excited, activation of the remaining portions of the soma membrane will suddenly occur.
摘要
  1. 由逆向刺激在脊髓运动神经元中诱发的锋电位,其上升相通常会出现一个转折。用短脉冲直接刺激诱发的锋电位中也存在类似的转折。2. 在这两种情况下,如果运动神经元膜去极化,转折就会变得不那么明显;而当膜超极化时,转折则会更明显。只有施加足够的超极化,逆向和直接锋电位才可能从转折水平下降,从而诱发一个“小锋电位”。当在一个先前锋电位之后诱发逆向或直接锋电位时,也会发生类似的情况。3. 在“小锋电位”发放后不久施加直接刺激所诱发的锋电位,在一个临界刺激间隔时也可能会部分受阻。然而,在更短的间隔时,锋电位大小又会增加,并且在上升相中检测不到转折。4. 当一个弱的直接刺激仅诱发一个小锋电位时,一个更强的刺激可能会诱发一个完整的锋电位。在多种条件下已经构建了诱发小锋电位或完整锋电位所需刺激强度的曲线。5. 为了解释这些结果,假定胞体膜大部分区域的阈值高于轴突的阈值,这种转变发生在轴突丘附近的一个有限区域。在逆向或直接刺激之后,胞体兴奋于是在轴突丘区域开始。活动向胞体的传播起初缓慢且安全系数低。在这个阶段,阻断可能很容易诱发。随着不断增长的冲动涉及越来越大的胞体膜区域,传播的安全系数会迅速增加,这样一旦临界区域被兴奋,胞体膜其余部分的激活就会突然发生。

相似文献

1
Steps in the production of motoneuron spikes.
J Gen Physiol. 1957 May 20;40(5):735-52. doi: 10.1085/jgp.40.5.735.
2
Further study of soma, dendrite, and axon excitation in single neurons.
J Gen Physiol. 1955 Sep 20;39(1):121-53. doi: 10.1085/jgp.39.1.121.
4
IMPULSE ORIGIN AND PROPAGATION IN A BIPOLAR SENSORY NEURON.
J Gen Physiol. 1964 Jan;47(3):487-99. doi: 10.1085/jgp.47.3.487.
6
Axon terminal hyperexcitability associated with epileptogenesis in vitro. I. Origin of ectopic spikes.
J Neurophysiol. 1993 Sep;70(3):961-75. doi: 10.1152/jn.1993.70.3.961.

引用本文的文献

1
A mechanism for differential control of axonal and dendritic spiking underlying learning in a cerebellum-like circuit.
Curr Biol. 2023 Jul 10;33(13):2657-2667.e4. doi: 10.1016/j.cub.2023.05.040. Epub 2023 Jun 12.
2
Electrical Stimulation of Temporal and Limbic Circuitry Produces Distinct Responses in Human Ventral Temporal Cortex.
J Neurosci. 2023 Jun 14;43(24):4434-4447. doi: 10.1523/JNEUROSCI.1325-22.2023. Epub 2023 May 15.
3
Electrical Properties of Adult Mammalian Motoneurons.
Adv Neurobiol. 2022;28:191-232. doi: 10.1007/978-3-031-07167-6_9.
5
Inhibitory Synapse Formation at the Axon Initial Segment.
Front Mol Neurosci. 2019 Nov 5;12:266. doi: 10.3389/fnmol.2019.00266. eCollection 2019.
6
A oocyte model system to study action potentials.
J Gen Physiol. 2018 Nov 5;150(11):1583-1593. doi: 10.1085/jgp.201812146. Epub 2018 Sep 28.
7
Axon initial segments: structure, function, and disease.
Ann N Y Acad Sci. 2018 May;1420(1):46-61. doi: 10.1111/nyas.13718. Epub 2018 May 11.
8
The H-Reflex as a Biomarker for Spinal Disinhibition in Painful Diabetic Neuropathy.
Curr Diab Rep. 2018 Jan 23;18(1):1. doi: 10.1007/s11892-018-0969-5.
9
Is realistic neuronal modeling realistic?
J Neurophysiol. 2016 Nov 1;116(5):2180-2209. doi: 10.1152/jn.00360.2016. Epub 2016 Aug 17.
10
Cortical Axons, Isolated in Channels, Display Activity-Dependent Signal Modulation as a Result of Targeted Stimulation.
Front Neurosci. 2016 Mar 7;10:83. doi: 10.3389/fnins.2016.00083. eCollection 2016.

本文引用的文献

1
Evidence for electrical transmission in nerve: Part II.
J Physiol. 1937 Jul 15;90(2):211-32. doi: 10.1113/jphysiol.1937.sp003508.
2
Evidence for electrical transmission in nerve: Part I.
J Physiol. 1937 Jul 15;90(2):183-210. doi: 10.1113/jphysiol.1937.sp003507.
3
Stimulation of spinal motoneurones with intracellular electrodes.
J Physiol. 1956 Nov 28;134(2):451-70. doi: 10.1113/jphysiol.1956.sp005657.
4
Electric potentials occurring around a neurone during its antidromic activation.
J Neurophysiol. 1957 Jan;20(1):27-60. doi: 10.1152/jn.1957.20.1.27.
5
Resting and action potentials of cultured chick embryo spinal ganglion cells.
J Comp Neurol. 1956 Apr;104(2):285-329. doi: 10.1002/cne.901040207.
6
Potentials recorded from the spinal cord with microelectrodes.
J Physiol. 1955 Dec 29;130(3):625-54. doi: 10.1113/jphysiol.1955.sp005432.
7
The electrical properties of the motoneurone membrane.
J Physiol. 1955 Nov 28;130(2):291-325. doi: 10.1113/jphysiol.1955.sp005411.
8
Response of single motoneurons to direct stimulation in toad's spinal cord.
J Neurophysiol. 1955 Sep;18(5):472-85. doi: 10.1152/jn.1955.18.5.472.
10
Cholinergic and inhibitory synapses in a pathway from motor-axon collaterals to motoneurones.
J Physiol. 1954 Dec 10;126(3):524-62. doi: 10.1113/jphysiol.1954.sp005226.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验