Vartanov S S, Pavlov A R, Iaropolov A I
Biokhimiia. 1992 Mar;57(3):323-41.
Some properties of aldose reductase isolated from various sources and possible ways of regulation of the enzyme catalytic activity are reviewed. Mammalian aldose reductases are monomeric enzymes with M(r) of 30-40 kDa and a broad substrate specificity towards aldoses. The physiological role of this enzyme consists, apparently, in providing an additional pathway for utilization of glucose and removing toxic compounds carrying an aldehyde group from the cell. Aldose reductase is thought to play a key role in various hyperglycemic states, including diabetic cataract. The kinetics of the aldose reductase reaction is hyperbolic with NADPH and nonhyperbolic with glucose. The rate of the enzyme-catalyzed reaction is determined by the effector binding in the active of inhibitory center of the enzyme. Incubation with substrates leads to the activation of the enzyme which is accompanied by a decrease of the effector binding in the enzyme inhibitory center with a sharp decrease in the sensitivity of the activated enzyme to NADPH concentration changes in the presence of glucose excess. A mechanism underlying the catalytic effect of both native and activated forms of the enzyme is proposed.