Suppr超能文献

Normal anatomy and neurophysiology of the hippocampal formation.

作者信息

Knowles W D

机构信息

Department of Brain and Vascular Research, Cleveland Clinic Foundation, Ohio 44195.

出版信息

J Clin Neurophysiol. 1992 Apr;9(2):252-63.

PMID:1350592
Abstract

This article reviews the anatomy and neurophysiology of the normal hippocampal formation, with emphasis on the human hippocampus. The hippocampus receives inputs from numerous limbic, cortical, and subcortical areas, primarily via the entorhinal cortex and subiculum. The primary pathway of neural activity entering the hippocampus is from entorhinal cortex via the perforant path to the dentate granule cells, with collaterals to CA1 and CA3 pyramidal cells. Mossy fibers from granule cells excite CA3 pyramidal cells and hilar interneurons. CA3 pyramidal cells excite CA1 pyramidal cells, with local and commissural excitatory collaterals exciting other CA3 pyramidal cells and septum. CA1 pyramidal cells send efferent fibers to subiculum, entorhinal cortex, and several subcortical areas. The principal excitatory synapses are glutamatergic, with two important postsynaptic receptor types, alpha-amino-3-hydroxy-5-methyl-isoxazolepropionic acid and N-methyl-D-aspartate. The primary inhibitory transmitter is gamma-aminobutyric acid (GABA), with two postsynaptic receptor types, GABAA and GABAB. A number of modulatory transmitters and neuropeptides are also present. Inhibitory local synaptic networks in the hippocampus are described. Membrane ion channels in hippocampal neurons, particularly Ca2+ channels and K+ channels, are responsible for the regulation and patterning of neural activity. Long-term potentiation and axon sprouting are two experimental paradigms of neural plasticity presumably involved in hippocampal memory function.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验