Suppr超能文献

视紫红质和视蛋白的热稳定性。

The thermal stability of rhodopsin and opsin.

作者信息

HUBBARD R

出版信息

J Gen Physiol. 1958 Nov 20;42(2):259-80. doi: 10.1085/jgp.42.2.259.

Abstract

Rhodopsin, the red photosensitive pigment of rod vision, is composed of a specific cis isomer of retinene, neo-b (11-cis), joined as chromophore to a colorless protein, opsin. We have investigated the thermal denaturation of cattle rhodopsin and opsin in aqueous digitonin solution, and in isolated rod outer limbs. Both rhodopsin and opsin are more stable in rods than in solution. In solution as well as in rods, moreover, rhodopsin is considerably more stable than opsin. The chromophore therefore protects opsin against denaturation. This is true whether rhodopsin is extracted from dark-adapted retinas, or synthesized in vitro from neo-b retinene and opsin. Excess neo-b retinene does not protect rhodopsin against denaturation. The protection involves the specific relationship between the chromophore and opsin. Similar, though somewhat less, protection is afforded opsin by the stereoisomeric iso-a (9-cis) chromophore in isorhodopsin. The Arrhenius activation energies (E(a)) and entropies of activation (DeltaSdouble dagger) are much greater for thermal denaturation of rhodopsin and isorhodopsin than of opsin. Furthermore, these values differ considerably for rhodopsins from different species -frog, squid, cattle-presumably due to species differences in the opsins. Heat or light bleaches rhodopsin by different mechanisms, yielding different products. Light stereoisomerizes the retinene chromophore; heat denatures the opsin. Photochemical bleaching therefore yields all-trans retinene and native opsin; thermal bleaching, neo-b retinene and denatured opsin.

摘要

视紫红质是视杆细胞视觉中的红色感光色素,它由视黄醛的一种特定顺式异构体新 - b(11 - 顺式)作为发色团与无色蛋白质视蛋白结合而成。我们研究了牛视紫红质和视蛋白在洋地黄皂苷水溶液以及分离的视杆细胞外段中的热变性。视紫红质和视蛋白在视杆细胞中比在溶液中更稳定。此外,无论是在溶液中还是在视杆细胞中,视紫红质都比视蛋白稳定得多。因此,发色团可保护视蛋白不发生变性。无论视紫红质是从暗适应的视网膜中提取的,还是由新 - b视黄醛和视蛋白在体外合成的,都是如此。过量的新 - b视黄醛并不能保护视紫红质不发生变性。这种保护涉及发色团与视蛋白之间的特定关系。异视紫红质中的立体异构异 - a(9 - 顺式)发色团对视蛋白也有类似但稍弱的保护作用。视紫红质和异视紫红质热变性的阿仑尼乌斯活化能(E(a))和活化熵(ΔS双剑号)比视蛋白的要大得多。此外,不同物种(青蛙、鱿鱼、牛)的视紫红质的这些值有很大差异,这可能是由于视蛋白的物种差异所致。热或光通过不同机制使视紫红质褪色,产生不同的产物。光使视黄醛发色团发生立体异构化;热使视蛋白变性。因此,光化学褪色产生全反式视黄醛和天然视蛋白;热褪色产生新 - b视黄醛和变性视蛋白。

相似文献

1
The thermal stability of rhodopsin and opsin.
J Gen Physiol. 1958 Nov 20;42(2):259-80. doi: 10.1085/jgp.42.2.259.
2
Cis-trans isomers of vitamin A and retinene in the rhodopsin system.
J Gen Physiol. 1952 Nov;36(2):269-315. doi: 10.1085/jgp.36.2.269.
3
The rhodopsin system of the squid.
J Gen Physiol. 1958 Jan 20;41(3):501-28. doi: 10.1085/jgp.41.3.501.
4
Human rhodopsin.
Science. 1958 Jan 31;127(3292):222-6. doi: 10.1126/science.127.3292.222.
5
Retinene isomerase.
J Gen Physiol. 1956 Jul 20;39(6):935-62. doi: 10.1085/jgp.39.6.935.
6
The molar extinction of rhodopsin.
J Gen Physiol. 1953 Nov 20;37(2):189-200. doi: 10.1085/jgp.37.2.189.
7
Iodopsin.
J Gen Physiol. 1955 May 20;38(5):623-81. doi: 10.1085/jgp.38.5.623.
8
The role of sulfhydryl groups in the bleaching and synthesis of rhodopsin.
J Gen Physiol. 1952 May;35(5):797-821. doi: 10.1085/jgp.35.5.797.
9
Opsin activation of transduction in the rods of dark-reared Rpe65 knockout mice.
J Physiol. 2005 Oct 1;568(Pt 1):83-95. doi: 10.1113/jphysiol.2005.091942. Epub 2005 Jul 1.
10
The stability of rhodopsin and opsin; effects of pH and aging.
J Gen Physiol. 1956 Jul 20;39(6):923-33. doi: 10.1085/jgp.39.6.923.

引用本文的文献

1
Convergent evolution of animal and microbial rhodopsins.
RSC Adv. 2023 Feb 13;13(8):5367-5381. doi: 10.1039/d2ra07073a. eCollection 2023 Feb 6.
2
Ultrafast spectra and kinetics of human green-cone visual pigment at room temperature.
Proc Natl Acad Sci U S A. 2023 Jan 3;120(1):e2214276120. doi: 10.1073/pnas.2214276120. Epub 2022 Dec 28.
3
Mass Spectrometry Methods for Measuring Protein Stability.
Chem Rev. 2022 Apr 27;122(8):7690-7719. doi: 10.1021/acs.chemrev.1c00857. Epub 2022 Mar 22.
4
Computational Investigation of Protein Photoinactivation by Molecular Hyperthermia.
J Biomech Eng. 2021 Mar 1;143(3). doi: 10.1115/1.4049017.
6
Vitamin A: its many roles-from vision and synaptic plasticity to infant mortality.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2020 May;206(3):389-399. doi: 10.1007/s00359-020-01403-z. Epub 2020 Feb 7.
7
Molecular mechanism for thermal denaturation of thermophilic rhodopsin.
Chem Sci. 2019 Jun 20;10(31):7365-7374. doi: 10.1039/c9sc00855a. eCollection 2019 Aug 21.
8
Increasing the Stability of Recombinant Human Green Cone Pigment.
Biochemistry. 2018 Feb 13;57(6):1022-1030. doi: 10.1021/acs.biochem.7b01118. Epub 2018 Jan 29.
9
Measurement of Slow Spontaneous Release of 11-cis-Retinal from Rhodopsin.
Biophys J. 2017 Jan 10;112(1):153-161. doi: 10.1016/j.bpj.2016.12.005.
10
Unusual kinetics of thermal decay of dim-light photoreceptors in vertebrate vision.
Proc Natl Acad Sci U S A. 2014 Jul 22;111(29):10438-43. doi: 10.1073/pnas.1410826111. Epub 2014 Jul 7.

本文引用的文献

1
The reduction of retinene1 to vitamina A1 in vitro.
J Gen Physiol. 1949 Jan;32(3):367-89. doi: 10.1085/jgp.32.3.367.
2
The thermal decomposition of visual purple.
J Physiol. 1938 Jun 14;93(1):24-38. doi: 10.1113/jphysiol.1938.sp003622.
3
THE ACTION OF LIGHT ON RHODOPSIN.
Proc Natl Acad Sci U S A. 1958 Feb;44(2):130-9. doi: 10.1073/pnas.44.2.130.
4
The Visual Cycle and Protein Denaturation.
Proc Natl Acad Sci U S A. 1936 Feb;22(2):147-9. doi: 10.1073/pnas.22.2.147.
5
The light reaction in the bleaching of rhodopsin.
Science. 1950 Feb 17;111(2877):179-81. doi: 10.1126/science.111.2877.179.
6
The role of sulfhydryl groups in the bleaching and synthesis of rhodopsin.
J Gen Physiol. 1952 May;35(5):797-821. doi: 10.1085/jgp.35.5.797.
7
Bleaching of rhodopsin by light and by heat.
Nature. 1958 Apr 19;181(4616):1126. doi: 10.1038/1811126a0.
8
Human rhodopsin.
Science. 1958 Jan 31;127(3292):222-6. doi: 10.1126/science.127.3292.222.
9
The rhodopsin system of the squid.
J Gen Physiol. 1958 Jan 20;41(3):501-28. doi: 10.1085/jgp.41.3.501.
10
Purkinje shift and retinal noise.
Nature. 1957 Feb 2;179(4553):255-6. doi: 10.1038/179255b0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验