Suppr超能文献

视锥色素

Iodopsin.

作者信息

WALD G, BROWN P K, SMITH P H

出版信息

J Gen Physiol. 1955 May 20;38(5):623-81. doi: 10.1085/jgp.38.5.623.

Abstract

The iodopsin system found in the cones of the chicken retina is identical with the rhodopsin system in its carotenoids. It differs only in the protein-the opsin -with which carotenoid combines. The cone protein may be called photopsin to distinguish it from the scotopsins of the rods. Iodopsin bleaches in the light to a mixture of photopsin and all-trans retinene. The latter is reduced by alcohol dehydrogenase and cozymase to all-trans vitamin A(1). Iodopsin is resynthesized from photopsin and a cis isomer of vitamin A, neovitamin Ab or the corresponding neoretinene b, the same isomer that forms rhodopsin. The synthesis of iodopsin from photopsin and neoretinene b is a spontaneous reaction. A second cis retinene, isoretinene a, forms iso-iodopsin (lambda(max) 510 mmicro). The bleaching of iodopsin in moderate light is a first-order reaction (Bliss). The synthesis of iodopsin from neoretinene b and opsin is second-order, like that of rhodopsin, but is very much more rapid. At 10 degrees C. the velocity constant for iodopsin synthesis is 527 times that for rhodopsin synthesis. Whereas rhodopsin is reasonably stable in solution from pH 4-9, iodopsin is stable only at pH 5-7, and decays rapidly at more acid or alkaline reactions. The sulfhydryl poison, p-chloromercuribenzoate, blocks the synthesis of iodopsin, as of rhodopsin. It also bleaches iodopsin in concentrations which do not attack rhodopsin. Hydroxylamine also bleaches iodopsin, yet does not poison its synthesis. Hydroxylamine acts by competing with the opsins for retinene. It competes successfully with chicken, cattle, or frog scotopsin, and hence blocks rhodopsin synthesis; but it is less efficient than photopsin in trapping retinene, and hence does not block iodopsin synthesis. Though iodopsin has not yet been prepared in pure form, its absorption spectrum has been computed by two independent procedures. This exhibits an alpha-band with lambda(max) 562 mmicro, a minimum at about 435 mmicro, and a small beta-band in the near ultraviolet at about 370 mmicro. The low concentration of iodopsin in the cones explains to a first approximation their high threshold, and hence their status as organs of daylight vision. The relatively rapid synthesis of iodopsin compared with rhodopsin parallels the relatively rapid dark adaptation of cones compared with rods. A theoretical relation is derived which links the logarithm of the visual sensitivity with the concentration of visual pigment in the rods and cones. Plotted in these terms, the course of rod and cone dark adaptation resembles closely the synthesis of rhodopsin and iodopsin in solution. The spectral sensitivities of rod and cone vision, and hence the Purkinje phenomenon, have their source in the absorption spectra of rhodopsin and iodopsin. In the chicken, for which only rough spectral sensitivity measurements are available, this relation can be demonstrated only approximately. In the pigeon the scotopic sensitivity matches the spectrum of rhodopsin; but the photopic sensitivity is displaced toward the red, largely or wholly through the filtering action of the colored oil globules in the pigeon cones. In cats, guinea pigs, snakes, and frogs, in which no such colored ocular structures intervene, the scotopic and photopic sensitivities match quantitatively the absorption spectra of rhodopsin and iodopsin. In man the scotopic sensitivity matches the absorption spectrum of rhodopsin; but the photopic sensitivity, when not distorted by the yellow pigmentations of the lens and macula lutea, lies at shorter wave lengths than iodopsin. This discrepancy is expected, for the human photopic sensitivity represents a composite of at least three classes of cone concerned with color vision.

摘要

鸡视网膜视锥细胞中的视碘质系统在类胡萝卜素方面与视紫红质系统相同。它与视紫红质系统的不同之处仅在于与之结合的类胡萝卜素的蛋白质——视蛋白。视锥细胞的蛋白质可称为光视蛋白,以区别于视杆细胞的暗视蛋白。视碘质在光照下漂白为光视蛋白和全反式视黄醛的混合物。后者被乙醇脱氢酶和辅酶还原为全反式维生素A(1)。视碘质由光视蛋白和维生素A的一种顺式异构体新维生素Ab或相应的新视黄醛b重新合成,新视黄醛b也是形成视紫红质的同一种异构体。视碘质由光视蛋白和新视黄醛b合成是一个自发反应。另一种顺式视黄醛异视黄醛a形成异视碘质(最大吸收波长510微米)。视碘质在适度光照下的漂白是一级反应(布利斯)。视碘质由新视黄醛b和视蛋白合成是二级反应,与视紫红质的合成一样,但速度要快得多。在10℃时,视碘质合成的速度常数是视紫红质合成速度常数的527倍。视紫红质在pH值4 - 9的溶液中相当稳定,而视碘质仅在pH值5 - 7时稳定,在更酸或更碱的反应中会迅速分解。巯基毒物对氯汞苯甲酸像抑制视紫红质合成一样抑制视碘质的合成。它还能在不作用于视紫红质的浓度下漂白视碘质。羟胺也能漂白视碘质,但不抑制其合成。羟胺通过与视蛋白竞争视黄醛起作用。它能成功地与鸡、牛或蛙的暗视蛋白竞争,从而抑制视紫红质的合成;但在捕获视黄醛方面它不如光视蛋白有效,因此不抑制视碘质的合成。虽然视碘质尚未以纯形式制备出来,但其吸收光谱已通过两种独立的方法计算出来。它呈现出一个最大吸收波长为562微米的α带,在约435微米处有一个最小值,以及在近紫外区约370微米处有一个小的β带。视锥细胞中视碘质浓度低初步解释了它们的高阈值,因此也解释了它们作为明视觉器官的地位。与视紫红质相比,视碘质相对快速的合成与视锥细胞与视杆细胞相比相对快速的暗适应相平行。推导出一个理论关系,将视觉敏感度的对数与视杆细胞和视锥细胞中视觉色素的浓度联系起来。按这些条件绘制,视杆细胞和视锥细胞的暗适应过程与视紫红质和视碘质在溶液中的合成过程非常相似。视杆细胞和视锥细胞视觉的光谱敏感度,以及因此产生的浦肯野现象,都源于视紫红质和视碘质的吸收光谱。对于鸡,由于只有粗略的光谱敏感度测量数据,这种关系只能大致证明。在鸽子中,暗视觉敏感度与视紫红质的光谱匹配;但明视觉敏感度向红色方向偏移,这主要或完全是由于鸽子视锥细胞中有色油滴的滤光作用。在猫科动物、豚鼠、蛇和青蛙中,由于没有这种有色眼结构的干扰,暗视觉和明视觉敏感度在数量上与视紫红质和视碘质的吸收光谱匹配。在人类中,暗视觉敏感度与视紫红质吸收光谱匹配;但明视觉敏感度在未被晶状体和黄斑的黄色色素干扰时,位于比视碘质更短的波长处。这种差异是可以预料的,因为人类的明视觉敏感度代表了至少三类与色觉有关的视锥细胞的综合情况。

相似文献

1
Iodopsin.
J Gen Physiol. 1955 May 20;38(5):623-81. doi: 10.1085/jgp.38.5.623.
2
Cis-trans isomers of vitamin A and retinene in the rhodopsin system.
J Gen Physiol. 1952 Nov;36(2):269-315. doi: 10.1085/jgp.36.2.269.
3
Iodopsin, a red-sensitive cone visual pigment in the chicken retina.
Photochem Photobiol. 1991 Dec;54(6):1061-70. doi: 10.1111/j.1751-1097.1991.tb02130.x.
4
Human rhodopsin.
Science. 1958 Jan 31;127(3292):222-6. doi: 10.1126/science.127.3292.222.
6
Structure and photobleaching process of chicken iodopsin.
Biophys Chem. 1995 Sep-Oct;56(1-2):57-62. doi: 10.1016/0301-4622(95)00015-p.
7
The visual system of the alligator.
J Gen Physiol. 1957 May 20;40(5):703-13. doi: 10.1085/jgp.40.5.703.
9
The thermal stability of rhodopsin and opsin.
J Gen Physiol. 1958 Nov 20;42(2):259-80. doi: 10.1085/jgp.42.2.259.
10
Monoclonal antibodies to chicken iodopsin.
Exp Eye Res. 1989 Feb;48(2):281-93. doi: 10.1016/s0014-4835(89)80077-6.

引用本文的文献

1
Ultrafast Transient Absorption Spectra and Kinetics of Rod and Cone Visual Pigments.
Molecules. 2023 Aug 2;28(15):5829. doi: 10.3390/molecules28155829.
2
Ultrafast spectra and kinetics of human green-cone visual pigment at room temperature.
Proc Natl Acad Sci U S A. 2023 Jan 3;120(1):e2214276120. doi: 10.1073/pnas.2214276120. Epub 2022 Dec 28.
3
Tmc proteins are essential for zebrafish hearing where Tmc1 is not obligatory.
Hum Mol Genet. 2020 Jul 29;29(12):2004-2021. doi: 10.1093/hmg/ddaa045.
4
Investigating the Ca-dependent and Ca-independent mechanisms for mammalian cone light adaptation.
Sci Rep. 2018 Oct 26;8(1):15864. doi: 10.1038/s41598-018-34073-8.
5
The role of retinol dehydrogenase 10 in the cone visual cycle.
Sci Rep. 2017 May 24;7(1):2390. doi: 10.1038/s41598-017-02549-8.
6
Complex binding pathways determine the regeneration of mammalian green cone opsin with a locked retinal analogue.
J Biol Chem. 2017 Jun 30;292(26):10983-10997. doi: 10.1074/jbc.M117.780478. Epub 2017 May 9.
7
Evolutionary transformation of rod photoreceptors in the all-cone retina of a diurnal garter snake.
Proc Natl Acad Sci U S A. 2016 Jan 12;113(2):356-61. doi: 10.1073/pnas.1513284113. Epub 2015 Dec 29.
8
9
Advances in understanding the molecular basis of the first steps in color vision.
Prog Retin Eye Res. 2015 Nov;49:46-66. doi: 10.1016/j.preteyeres.2015.07.004. Epub 2015 Jul 15.

本文引用的文献

1
Scotopic dominator and state of visual purple in the retina.
Acta Physiol Scand. 1949 Mar 12;17(2-3):161-9. doi: 10.1111/j.1748-1716.1949.tb00561.x.
2
ROD-CONE DARK ADAPTATION AND VITAMIN A.
Science. 1938 Sep 2;88(2279):219-21. doi: 10.1126/science.88.2279.219.
3
The absorption spectra of visual purple and of indicator yellow.
J Physiol. 1937 Jun 3;89(4):331-58. doi: 10.1113/jphysiol.1937.sp003482.
4
The light reaction in the bleaching of rhodopsin.
Science. 1950 Feb 17;111(2877):179-81. doi: 10.1126/science.111.2877.179.
5
The role of sulfhydryl groups in the bleaching and synthesis of rhodopsin.
J Gen Physiol. 1952 May;35(5):797-821. doi: 10.1085/jgp.35.5.797.
6
The photochemical basis of rod vision.
J Opt Soc Am. 1951 Dec;41(12):949-56. doi: 10.1364/josa.41.000949.
7
The interplay o light and heat in bleaching rhodopsin.
J Gen Physiol. 1952 Jan;35(3):495-517. doi: 10.1085/jgp.35.3.495.
8
The spectral sensitivity of the pigeon's retinal elements.
J Physiol. 1953 Dec 29;122(3):524-37. doi: 10.1113/jphysiol.1953.sp005018.
9
The molar extinction of rhodopsin.
J Gen Physiol. 1953 Nov 20;37(2):189-200. doi: 10.1085/jgp.37.2.189.
10
Cyanopsin, a new pigment of cone vision.
Science. 1953 Oct 30;118(3070):505-8. doi: 10.1126/science.118.3070.505.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验