Suppr超能文献

非洲爪蟾幼体运动节律产生背后的细胞特性和突触驱动的胚后发育。

The post-embryonic development of cell properties and synaptic drive underlying locomotor rhythm generation in Xenopus larvae.

作者信息

Sillar K T, Simmers A J, Wedderburn J F

机构信息

Department of Biology and Preclinical Medicine, University of St. Andrews, Fife, U.K.

出版信息

Proc Biol Sci. 1992 Jul 22;249(1324):65-70. doi: 10.1098/rspb.1992.0084.

Abstract

In the first 24 h of post-embryonic development, the motor rhythm underlying swimming in Xenopus laevis tadpoles changes from brief (ca. 7 ms) ventral root discharge in each cycle to bursts of activity lasting around 20 ms (Sillar et al. 1991). Because individual motoneurons in the spinal cord of newly hatched embryos normally fire only a single impulse per cycle, two possible changes underly the transition to motor bursts seen in larval ventral roots; desynchronization of neurons in a given ventral root which continue to fire once per cycle, or the developmental acquisition of a multiple spike capability in individual motoneurons. Here we have recorded intracellularly from ventrally positioned spinal neurons, presumed to be myotomal motoneurons, in stage 37/38 embryos and 24 h later in development in stage 42 larvae. We find that (i) larval neurons are able to fire more than one impulse per cycle of fictive swimming activity; (ii) unlike in the embryo, they generally will fire multiple impulses in response to injected depolarizing current; (iii) the synaptic drive to motoneurons during swimming increases dramatically in complexity, although it still consists of alternating phases of synaptic excitation and chloride-dependent inhibition, superimposed upon tonic synaptic depolarization. The results therefore suggest a developmental change in the membrane properties of rhythmically active neurons as a major factor in the post-embryonic development of swimming in Xenopus larvae. This change appears to occur in premotor rhythm generating interneurons as well as in the motoneurons themselves and may satisfy a demand for behavioural flexibility that allows larvae to survive in a complex and changing environment.

摘要

在非洲爪蟾蝌蚪胚胎后发育的最初24小时内,其游泳所依赖的运动节律从每个周期短暂的(约7毫秒)腹根放电转变为持续约20毫秒的活动爆发(西拉尔等人,1991年)。由于新孵化胚胎脊髓中的单个运动神经元通常每个周期仅发放一次冲动,因此在幼体腹根中观察到的向运动爆发的转变有两种可能的变化;给定腹根中的神经元去同步化,这些神经元每个周期继续发放一次冲动,或者单个运动神经元在发育过程中获得多峰能力。在这里,我们在第37/38阶段的胚胎以及发育24小时后的第42阶段幼体中,对假定为肌节运动神经元的腹侧脊髓神经元进行了细胞内记录。我们发现:(i)幼体神经元在每个虚构游泳活动周期中能够发放不止一次冲动;(ii)与胚胎不同,它们通常会对注入的去极化电流发放多个冲动;(iii)游泳期间运动神经元的突触驱动在复杂性上显著增加,尽管它仍然由突触兴奋和氯离子依赖性抑制的交替阶段组成,并叠加在持续性突触去极化之上。因此,结果表明节律性活动神经元的膜特性发生发育变化是非洲爪蟾幼体胚胎后游泳发育的一个主要因素。这种变化似乎发生在运动前节律产生的中间神经元以及运动神经元本身,并且可能满足行为灵活性的需求,使幼体能够在复杂多变的环境中生存。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验