INSERM, UMR_S 1130, CNRS, UMR 8246, Neuroscience Paris Seine, Institute of Biology Paris Seine, Sorbonne Univ, Paris, France.
Centre de Neurosciences Intégratives et Cognition, CNRS UMR 8002, Institut Neurosciences et Cognition, Université de Paris, Paris, France.
Elife. 2021 Apr 26;10:e62639. doi: 10.7554/eLife.62639.
Renshaw cells (V1) are excitable as soon as they reach their final location next to the spinal motoneurons and are functionally heterogeneous. Using multiple experimental approaches, in combination with biophysical modeling and dynamical systems theory, we analyzed, for the first time, the mechanisms underlying the electrophysiological properties of V1 during early embryonic development of the mouse spinal cord locomotor networks (E11.5-E16.5). We found that these interneurons are subdivided into several functional clusters from E11.5 and then display an unexpected transitory involution process during which they lose their ability to sustain tonic firing. We demonstrated that the essential factor controlling the diversity of the discharge pattern of embryonic V1 is the ratio of a persistent sodium conductance to a delayed rectifier potassium conductance. Taken together, our results reveal how a simple mechanism, based on the synergy of two voltage-dependent conductances that are ubiquitous in neurons, can produce functional diversity in embryonic V1 and control their early developmental trajectory.
Renshaw 细胞(V1)一旦到达其紧邻脊髓运动神经元的最终位置,就具有兴奋性,并且具有功能异质性。我们使用多种实验方法,结合生物物理建模和动力系统理论,首次分析了在小鼠脊髓运动网络的早期胚胎发育期间(E11.5-E16.5),V1 的电生理特性的潜在机制。我们发现,这些中间神经元从 E11.5 开始被分为几个功能簇,然后在一个意想不到的过渡退化过程中失去维持持续放电的能力。我们证明,控制胚胎 V1 放电模式多样性的关键因素是持续钠电流与延迟整流钾电流的比值。总之,我们的研究结果揭示了一种简单的机制,基于神经元中普遍存在的两种电压依赖性电流的协同作用,如何在胚胎 V1 中产生功能多样性,并控制其早期发育轨迹。