Suppr超能文献

Epidermal growth factor receptor distribution in burn wounds. Implications for growth factor-mediated repair.

作者信息

Wenczak B A, Lynch J B, Nanney L B

机构信息

Department of Plastic Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee.

出版信息

J Clin Invest. 1992 Dec;90(6):2392-401. doi: 10.1172/JCI116130.

Abstract

Epidermal growth factor (EGF) along with several related peptide growth factors has been shown both in vivo and in vitro to accelerate events associated with epidermal wound repair. EGF and transforming growth factor alpha act by binding to a common EGF receptor tyrosine kinase thereby initiating a series of events which ultimately regulate cell proliferation. This study examined the immunohistochemical localization of EGF receptor (EGF-R) in burn wound margins, adjacent proliferating epithelium, and closely associated sweat ducts, sebaceous glands, and hair follicles. Tissue specimens removed during surgical debridement were obtained from full and partial thickness burn wounds in 32 patients with total body surface area burns ranging from 2 to 88%. In the early postburn period (days 2-4), prominent staining for EGF-R was found in undifferentiated, marginal keratinocytes, adjacent proliferating, hypertrophic epithelium, and both marginal and nonmarginal hair follicles, sweat ducts, and sebaceous glands. During the late postburn period (days 5-16), EGF-R was depleted along leading epithelial margins; however, immunoreactive EGF-R remained intensely positive in the hypertrophic epithelium and all skin appendages. Increased detection of immunoreactive EGF-R and the presence of [125I]EGF binding in the hypertrophic epithelium correlated positively with proliferating cell nuclear antigen distributions. Thus, the presence of EGF-R in the appropriate keratinocyte populations suggests a functional role for this receptor during wound repair. Dynamic modulation in EGF receptor distribution during the temporal sequence of repair provides further evidence that an EGF/transforming growth factor alpha/EGF-R-mediated pathway is activated during human wound repair.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bab7/443395/e3dc8cc279e5/jcinvest00054-0256-a.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验