Suppr超能文献

Effect of soil/contaminant interactions on the biodegradation of naphthalene in flooded soil under denitrifying conditions.

作者信息

al-Bashir B, Cseh T, Leduc R, Samson R

机构信息

Department of Civil Engineering and Applied Mechanics, McGill University, Montreal, Canada.

出版信息

Appl Microbiol Biotechnol. 1990 Dec;34(3):414-9. doi: 10.1007/BF00170071.

Abstract

The mineralization of 14C-labelled naphthalene was studied in pristine and oil-contaminated soil slurry (30% solids) under denitrifying conditions using a range of concentrations from below to above the aqueous phase saturation level. Results from sorption-desorption experiments indicated that naphthalene desorption was highly irreversible and decreased with an increase in the soil organic content, thus influencing the availability for microbial consumption. Under denitrifying conditions, the mineralization of naphthalene to CO2 occurred in parallel with the consumption of nitrate and an increase in pH from 7.0 to 8.6. When the initial substrate concentration was 50 ppm (i.e. close to the aqueous phase saturation level), about 90% of the total naphthalene was mineralized within 50 days, and a maximum mineralization rate of 1.3 ppm day-1 was achieved after a lag period of approx. 18 days. When added at concentrations higher than the aqueous phase saturation level (200 and 500 ppm), similar mineralization rates (1.8 ppm day-1) occurred until about 50 ppm of the naphthalene was mineralized. After that the mineralization rates decreased logarithmically to a minimum of 0.24 ppm day-1 for the rest of the 160 days of the experiments. For both of these higher concentrations, the reaction kinetics were independent of the concentration, indicating that desorption of the substrate governs the mineralization rate. Other results indicated that pre-exposure of soil to oil contamination did not improve the degradation rates nor reduce the lag periods. This study clearly shows the potential of denitrifying conditions for the biodegradation of low molecular weight PAHs.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验