Suppr超能文献

基于径向基函数神经网络的HIV蛋白酶抑制剂抗病毒效力分类

Classification of HIV protease inhibitors on the basis of their antiviral potency using radial basis function neural networks.

作者信息

Patankar S J, Jurs P C

机构信息

Department of Chemistry, 152 Davey Laboratory, Penn State University, University Park, PA 16802, USA.

出版信息

J Comput Aided Mol Des. 2003 Feb-Apr;17(2-4):155-71. doi: 10.1023/a:1025317806473.

Abstract

HIV protease inhibitors are being used as frontline therapy in the treatment of HIV patients. Multi-drug-resistant HIV mutant strains are emerging with the initial aggressive multi-drug treatment of HIV patients. This necessitates continued search for novel inhibitors of viral replication. These protease inhibitors may further be useful as pharmacological agents for inhibition of other viral replication. Classification models of HIV Protease inhibitors are developed using a data set of 123 compounds containing several heterocycles. Their inhibitory concentrations expressed as log (IC50) ranged from -1.52 to 2.12 log units. The dataset was divided into active and inactive classes on the basis of their antiviral potency. Initially a two-class problem (active, inactive) is explored using k-nearest neighbor approach. In order to introduce non-linearity in the classifier different approaches were investigated. This led to the goal of a fast, simple, minimum user input, radial basis function neural network (RBFNN) classifier development. Then the same two-class problem was resolved using the (RBFNN) classifier. A genetic algorithm with RBFNN fitness evaluator was used to search for the optimum descriptor subsets. The application of majority rules was also tested for the RBFNN classification. The best six descriptor model found by the new cost function showed predictive ability in the high 80% range for an external prediction set.

摘要

HIV蛋白酶抑制剂正被用作治疗HIV患者的一线疗法。随着对HIV患者最初采用积极的多药治疗,耐多药的HIV突变株正在出现。这就需要持续寻找新型病毒复制抑制剂。这些蛋白酶抑制剂可能还可用作抑制其他病毒复制的药理剂。利用包含几种杂环的123种化合物的数据集开发了HIV蛋白酶抑制剂的分类模型。它们的抑制浓度以log(IC50)表示,范围为-1.52至2.12对数单位。根据抗病毒效力将该数据集分为活性和非活性类别。最初使用k近邻方法探索一个两类问题(活性、非活性)。为了在分类器中引入非线性,研究了不同的方法。这导致了开发一个快速、简单、用户输入最少的径向基函数神经网络(RBFNN)分类器的目标。然后使用(RBFNN)分类器解决同样的两类问题。使用带有RBFNN适应度评估器的遗传算法来搜索最佳描述符子集。还对多数规则在RBFNN分类中的应用进行了测试。新成本函数找到的最佳六个描述符模型对外部预测集显示出高达80%的预测能力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验