Klassen R, Meinhardt F
Institut für Mikrobielle Molekularbiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Corrensstr. 3, 48149, Münster, Germany.
Mol Genet Genomics. 2003 Nov;270(2):190-9. doi: 10.1007/s00438-003-0920-5. Epub 2003 Sep 9.
Strains of the yeast Pichia inositovora that carry the linear plasmids pPin1-1 (18 kb) and pPin1-3 (10 kb) display a killer activity towards Saccharomyces cerevisiae. Cloning and sequencing of the smaller plasmid, pPin1-3, revealed that it is 9683 bp long and has 154-bp terminal inverted repeats. Comparison of pPin1-3 with the only other completely sequenced killer plasmid, pGKL1 of Kluyveromyces lactis, revealed differences in genome organization. The Pichia element has four ORFs that account for 95% of the sequence. ORF1 is homologous to the putative immunity gene of the K. lactis system. A viral B-type DNA polymerase is encoded by ORF2. The predicted product of ORF3 displays similarities to the alpha- and beta-subunits of the heterotrimeric K. lactis killer toxin, also known as zymocin. A cysteine-rich chitin-binding site and a chitinase signature, characteristic for the alpha-subunit of zymocin were identified in Orf3p. Chitin affinity chromatography and Western analysis confirmed the plasmid specific expression and secretion of a protein that cross-reacts with an antibody raised against the alpha-subunit of K. lactis zymocin. Disruption of the major chitin synthase-gene ( CHS3) renders S. cerevisiae resistant to the toxin, providing further evidence that chitin is the cellular receptor for the P. inositovora toxin. Orf4p of pPin1-3 displays only weak similarities to the gamma-subunit of zymocin, which causes a G1 cell-cycle arrest in S. cerevisiae. However, disruption of the S. cerevisiae gene ELP3/TOT3, which encodes a histone-acetyltransferase that is essential for zymocin action, resulted in reduced sensitivity to the P. inositovora toxin also. Thus, despite obvious differences in genome organization and protein architecture, both killer systems very probably have similar modes of action.
携带线性质粒pPin1 - 1(18 kb)和pPin1 - 3(10 kb)的酵母毕赤氏肌醇酵母菌株对酿酒酵母具有杀伤活性。较小的质粒pPin1 - 3的克隆和测序显示,它长9683 bp,有154 bp的末端反向重复序列。将pPin1 - 3与另一个唯一完全测序的杀伤质粒——乳酸克鲁维酵母的pGKL1进行比较,发现基因组组织存在差异。毕赤氏酵母元件有四个开放阅读框(ORF),占序列的95%。ORF1与乳酸克鲁维酵母系统的假定免疫基因同源。ORF2编码一种病毒B型DNA聚合酶。ORF3的预测产物与异源三聚体乳酸克鲁维酵母杀伤毒素(也称为zymocin)的α和β亚基有相似性。在Orf3p中鉴定出了富含半胱氨酸的几丁质结合位点和几丁质酶特征,这是zymocin α亚基的特征。几丁质亲和层析和蛋白质免疫印迹分析证实了该质粒特异性表达并分泌一种与针对乳酸克鲁维酵母zymocin α亚基产生的抗体发生交叉反应的蛋白质。主要几丁质合酶基因(CHS3)的破坏使酿酒酵母对该毒素具有抗性,这进一步证明几丁质是毕赤氏肌醇酵母毒素的细胞受体。pPin1 - 3的Orf4p与zymocin的γ亚基只有微弱的相似性,zymocin会导致酿酒酵母细胞周期在G1期停滞。然而,酿酒酵母基因ELP3/TOT3(编码一种对zymocin作用至关重要的组蛋白乙酰转移酶)的破坏也导致对毕赤氏肌醇酵母毒素的敏感性降低。因此,尽管在基因组组织和蛋白质结构上存在明显差异,但两种杀伤系统很可能具有相似的作用模式。