Suppr超能文献

Prophage induction by DNA topoisomerase II poisons and reactive-oxygen species: role of DNA breaks.

作者信息

DeMarini D M, Lawrence B K

机构信息

Genetic Toxicology Division, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711.

出版信息

Mutat Res. 1992 May;267(1):1-17. doi: 10.1016/0027-5107(92)90106-c.

Abstract

Various compounds were evaluated for their ability to induce prophage lambda in the Escherichia coli WP2s(lambda) microscreen assay. The inability of a DNA gyrase subunit B inhibitor (novobiocin) to induce prophage indicated that inhibition of the gyrase's ATPase was insufficient to elicit the SOS response. In contrast, poisons of DNA gyrase subunit A (nalidixic acid and oxolinic acid) were the most potent inducers of prophage among the agents examined here. This suggested that inhibition of the ligation function of subunit A, which also has a DNA nicking activity, likely resulted in DNA breaks that were available (as single-stranded DNA) to act as strong SOS-inducing signals, leading to prophage induction. Agents that both intercalated and produced reactive-oxygen species (the mammalian DNA topoisomerase II poisons, adriamycin, ellipticine, and m-AMSA) were the next most potent inducers of prophage. Agents that produced reactive-oxygen species only (hydrogen peroxide and paraquat) were less potent than adriamycin and ellipticine but more potent than m-AMSA. Agents that intercalated but did not generate reactive-oxygen species (actinomycin D) or that did neither (teniposide) were unable to induce prophage, suggesting that intercalation alone may be insufficient to induce prophage. These results illustrate the variety of mechanisms (and the relative effectiveness of these mechanisms) by which agents can induce prophage. Nonetheless, these agents may induce prophage by producing essentially the same type of DNA damage, i.e., DNA strand breaks. The potent genotoxicity of the DNA gyrase subunit A poisons illustrates the genotoxic consequences of perturbing an important DNA-protein complex such as that formed by DNA and DNA topoisomerase.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验