Guitton D
Montreal Neurological Institute, McGill University, Quebec, Canada.
Trends Neurosci. 1992 May;15(5):174-9. doi: 10.1016/0166-2236(92)90169-9.
Combined eye and head displacements are routinely used to orient the visual axis rapidly (gaze). Humans can use a wide variety of head movement strategies. However, in the cat, comparatively limited eye motility forces a more routine and stereotyped use of head motion. Nevertheless, the same general principles of gaze control may be applicable to humans, rhesus monkeys and cats. The gaze control system can be modeled using a feedback system in which an internally created, instantaneous, gaze motor error signal--equivalent to the distance between the target and the gaze position at that time--is used to drive both eye and head motor circuits. The visual axis is moved until this error equals zero. Recent studies suggest that the superior colliculus of the cat provides brainstem eye and head motor circuits with the gaze motor error signal; such studies have led to speculation that information on ongoing gaze motion is fed back to the superior colliculus. It is still uncertain whether comparable collicular and brainstem neuronal mechanisms control gaze in the monkey.
眼睛和头部的联合位移通常用于快速定向视轴(注视)。人类可以采用各种各样的头部运动策略。然而,在猫中,相对有限的眼球运动迫使头部运动的使用更加常规和刻板。尽管如此,注视控制的相同一般原则可能适用于人类、恒河猴和猫。注视控制系统可以用一个反馈系统来建模,在这个系统中,一个内部产生的、瞬时的注视运动误差信号——相当于当时目标与注视位置之间的距离——被用来驱动眼睛和头部运动回路。视轴会一直移动,直到这个误差等于零。最近的研究表明,猫的上丘为脑干的眼睛和头部运动回路提供注视运动误差信号;此类研究引发了这样的推测,即关于正在进行的注视运动的信息会反馈到上丘。目前仍不确定在猴子中,类似的丘系和脑干神经元机制是否控制注视。