Guitton Daniel, Bergeron Andre, Choi Woo Young, Matsuo Satoshi
Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, QC H3A 2B4, Canada.
Prog Brain Res. 2003;142:55-68. doi: 10.1016/S0079-6123(03)42006-2.
Combined eye-head movements are routinely used to orient the visual axis (gaze) rapidly in space. The gaze control system can be modeled using a feedback system in which an internally created instantaneous gaze position error signal equivalent to the distance between the target and the current gaze position is used to drive brainstem eye and head motor circuits. The visual axis is driven until this gaze position error (GPE) is zero. The neural structure of the feedback system is discussed here. The midbrain's superior colliculus (SC) is implicated in gaze control but its 'location' in the feedback circuitry is debated. Our moving hill hypothesis proposed that the SC is within the feedback loop and that GPE is encoded topographically by a moving locus of activity on the motor map. In cat, fixation neurons of the superior colliculus encode GPE, which supports this model. Our preliminary evidence in both monkey and cat shows that neurons on the motor map respond to and encode, at very short latency, gaze shift perturbations. This further supports the hypothesis that the SC is within the gaze feedback loop.
眼球-头部联合运动通常用于在空间中快速定位视轴(注视)。注视控制系统可以用一个反馈系统来建模,在这个系统中,一个内部产生的瞬时注视位置误差信号(相当于目标与当前注视位置之间的距离)被用来驱动脑干的眼球和头部运动回路。视轴被驱动,直到这个注视位置误差(GPE)为零。这里讨论反馈系统的神经结构。中脑的上丘(SC)与注视控制有关,但其在反馈电路中的“位置”存在争议。我们的移动山丘假说提出,上丘在反馈回路内,并且GPE由运动图谱上的一个移动活动位点进行拓扑编码。在猫中,上丘的注视神经元对GPE进行编码,这支持了该模型。我们在猴子和猫身上的初步证据表明,运动图谱上的神经元在极短的潜伏期内对视轴偏移扰动做出反应并进行编码。这进一步支持了上丘在注视反馈回路内的假说。