Suppr超能文献

II类和III类β-微管蛋白的轴突运输:有证据表明,慢成分波仅代表成熟运动轴突中一小部分微管蛋白的移动。

Axonal transport of class II and III beta-tubulin: evidence that the slow component wave represents the movement of only a small fraction of the tubulin in mature motor axons.

作者信息

Hoffman P N, Lopata M A, Watson D F, Luduena R F

机构信息

Department of Ophthalmology, Johns Hopkins School of Medicine, Baltimore, Maryland 21287-9204.

出版信息

J Cell Biol. 1992 Nov;119(3):595-604. doi: 10.1083/jcb.119.3.595.

Abstract

Pulse-labeling studies demonstrate that tubulin synthesized in the neuron cell body (soma) moves somatofugally within the axon (at a rate of several millimeters per day) as a well-defined wave corresponding to the slow component of axonal transport. A major goal of the present study was to determine what proportion of the tubulin in mature motor axons is transported in this wave. Lumbar motor neurons in 9-wk-old rats were labeled by injecting [35S]methionine into the spinal cord 2 wk after motor axons were injured (axotomized) by crushing the sciatic nerve. Immunoprecipitation with mAbs which recognize either class II or III beta-tubulin were used to analyze the distributions of radioactivity in these isotypes in intact and axotomized motor fibers 5 d after labeling. We found that both isotypes were associated with the slow component wave, and that the leading edge of this wave was enriched in the class III isotype. Axotomy resulted in significant increases in the labeling and transport rates of both isotypes. Immunohistochemical examination of peripheral nerve fibers demonstrated that nearly all of the class II and III beta-tubulin in nerve fibers is located within axons. Although the amounts of radioactivity per millimeter of nerve in class II and III beta-tubulin were significantly greater in axotomized than in control nerves (with increases of +160% and +58%, respectively), immunoassay revealed no differences in the amounts of these isotypes in axotomized and control motor fibers. We consider several explanations for this paradox; these include the possibility that the total tubulin content is relatively insensitive to changes in the amount of tubulin transported in the slow component wave because this wave represents the movement of only a small fraction of the tubulin in these motor fibers.

摘要

脉冲标记研究表明,在神经元细胞体(胞体)中合成的微管蛋白以明确的波的形式在轴突内进行向胞体远端的移动(速度为每天几毫米),这一移动对应于轴突运输的慢成分。本研究的一个主要目标是确定成熟运动轴突中微管蛋白在这一波中运输的比例。在9周龄大鼠的坐骨神经被挤压切断(轴突切断)2周后,向脊髓注射[35S]甲硫氨酸来标记腰段运动神经元。在标记5天后,使用识别II类或III类β-微管蛋白的单克隆抗体进行免疫沉淀,以分析完整和轴突切断的运动纤维中这些同型异构体的放射性分布。我们发现这两种同型异构体都与慢成分波相关,并且该波的前沿富含III类同型异构体。轴突切断导致两种同型异构体的标记和运输速率显著增加。对周围神经纤维的免疫组织化学检查表明,神经纤维中几乎所有的II类和III类β-微管蛋白都位于轴突内。尽管轴突切断的神经中每毫米神经纤维的II类和III类β-微管蛋白的放射性量比对照神经显著增加(分别增加了160%和58%),但免疫分析显示轴突切断和对照运动纤维中这些同型异构体的量没有差异。我们考虑了对这一矛盾现象的几种解释;其中包括这样一种可能性,即微管蛋白的总量对慢成分波中运输的微管蛋白量的变化相对不敏感,因为这一波仅代表这些运动纤维中一小部分微管蛋白的移动。

相似文献

8
Assembly of microfilaments and microtubules from axonally transported actin and tubulin after axotomy.
J Neurosci Res. 1996 Feb 15;43(4):412-9. doi: 10.1002/(SICI)1097-4547(19960215)43:4<412::AID-JNR3>3.0.CO;2-I.
9
Neurofilament and tubulin transport slows along the course of mature motor axons.
Brain Res. 1989 Jan 16;477(1-2):225-32. doi: 10.1016/0006-8993(89)91410-8.

引用本文的文献

1
Adrenomedullin, a Novel Target for Neurodegenerative Diseases.
Mol Neurobiol. 2018 Dec;55(12):8799-8814. doi: 10.1007/s12035-018-1031-y. Epub 2018 Mar 29.
2
The nano-architecture of the axonal cytoskeleton.
Nat Rev Neurosci. 2017 Dec;18(12):713-726. doi: 10.1038/nrn.2017.129. Epub 2017 Nov 3.
3
Immunohistochemical Markers for Prospective Studies in Neurofibromatosis-1 Porcine Models.
J Histochem Cytochem. 2017 Oct;65(10):607-618. doi: 10.1369/0022155417729357. Epub 2017 Aug 28.
4
Neurofilaments and Neurofilament Proteins in Health and Disease.
Cold Spring Harb Perspect Biol. 2017 Apr 3;9(4):a018309. doi: 10.1101/cshperspect.a018309.
5
Substantial Differentiation of Human Neural Stem Cells Into Motor Neurons on a Biomimetic Polyurea.
Macromol Biosci. 2015 Sep;15(9):1206-11. doi: 10.1002/mabi.201500066. Epub 2015 May 29.
10
Neuritic growth rate described by modeling microtubule dynamics.
Bull Math Biol. 1994 Mar;56(2):249-73. doi: 10.1007/BF02460642.

本文引用的文献

1
Stable polymers of the axonal cytoskeleton: the axoplasmic ghost.
J Cell Biol. 1982 Jan;92(1):192-8. doi: 10.1083/jcb.92.1.192.
2
Control of axonal caliber by neurofilament transport.
J Cell Biol. 1984 Aug;99(2):705-14. doi: 10.1083/jcb.99.2.705.
3
Slowing of the axonal transport of neurofilament proteins during development.
J Neurosci. 1983 Aug;3(8):1694-700. doi: 10.1523/JNEUROSCI.03-08-01694.1983.
4
Correlation of axonal regeneration and slow component B in two branches of a single axon.
J Neurosci. 1983 Feb;3(2):243-51. doi: 10.1523/JNEUROSCI.03-02-00243.1983.
7
Axonal transport of the cytoskeleton in regenerating motor neurons: constancy and change.
Brain Res. 1980 Dec 8;202(2):317-33. doi: 10.1016/0006-8993(80)90144-4.
8
The axonal pathology in chronic IDPN intoxication.
J Neuropathol Exp Neurol. 1980 Jan;39(1):42-55. doi: 10.1097/00005072-198001000-00004.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验