Yun Donghwa, Lee Young M, Laughter Melissa R, Freed Curt R, Park Daewon
Department of Bioengineering, University of Colorado Denver, 12800 E. 19th Ave, Aurora, CO, 80045-2560, USA.
Division of Clinical Pharmacology and Toxicology, University of Colorado School of Medicine, 12700 E. 19th Ave, Aurora, CO, 80045-2560, USA.
Macromol Biosci. 2015 Sep;15(9):1206-11. doi: 10.1002/mabi.201500066. Epub 2015 May 29.
To find the first restorative treatment for spinal cord injury (SCI), researchers have focused on stem cell therapies. However, one obstacle is the lack of an implantable cell scaffold that can support efficient motor neuron (MN) differentiation and proliferation. We aimed to overcome this through the use of an RGD functionalized novel biomimetic polyurea, optimized to encourage efficient differentiation of MNs. Images taken after 14-days showed increased differentiation (∼40%) of hNSCs into MNs as well as increased cell count on the biomimetic polymer compared to PDL-Laminin coating, indicating that the RGD-polyurea provides a favorable microenvironment for hNSC survival, having promising implications for future SCI therapies.
为了找到脊髓损伤(SCI)的首个恢复性治疗方法,研究人员将重点放在了干细胞疗法上。然而,一个障碍是缺乏一种可植入的细胞支架,它能够支持运动神经元(MN)的高效分化和增殖。我们旨在通过使用一种RGD功能化的新型仿生聚脲来克服这一问题,这种聚脲经过优化以促进MN的高效分化。14天后拍摄的图像显示,与聚-D-赖氨酸-层粘连蛋白涂层相比,人神经干细胞(hNSC)向MN的分化增加了(约40%),并且在仿生聚合物上的细胞数量也增加了,这表明RGD-聚脲为hNSC的存活提供了有利的微环境,对未来的SCI治疗具有广阔的应用前景。