The effect of free Mg2+, MgEDTA and MgCDTA on the phofphorylation of the (Na+ + K+)-activated ATPase (ATP phosphohydrolase, EC 3.6.1.3) has been studied. 2. 10 mM trans-1,2-diaminocyclohexane-N,N,N',N'-tetraacetic acid (CDTA) added simultaneously with [gamma-32P]ATP to a solution containing the enzyme, 1 mM Mg2+ and 150 mM Na+ does not prevent formation of phospho-enzyme. When [gamma-32P]ATP is added after CDTA the level of phospho-enzyme obtained decreases with increase in the time interval between addition of CDTA and ATP. The inability of CDTA to prevent the formation of phospho-enzyme becomes more pronounced when the medium contains MgEDTA. In the presence of CDTA the maximum amount of phospho-enzyme formed increases with the MgEDTA concentration. 3. Without CDTA the steady-state level of phospho-enzyme is directly proportional to the logarithm of free Mg2+ concentration. Neither with suboptimal nor with optimal concentrations of free Mg2+ does MgEDTA have an effect on the level of phospho-enzyme formed. 4. Using the phospho-enzyme level as a measure of free Mg2+ the experiments show that CDTA reacts slower with Mg2+ than does EDTA, but the stability constant of MgCDTA complex is higher than of MgCDTA, complex. 5. Due to the higher stability constant, of MgCDTA, as compared to MgEDTA, addition of CDTA to a medium containing free Mg2+ and MgEDTA will not only chelate the free Mg2+, but it will also shift the equilibrium from MgEDTA towards MgCDTA, i.e. MgEDTA acts as a source of free Mg2+ which is then chelated by CDTA. The experiments show that it takes minutes before Mg2+, EDTA and CDTA come to equilibrium. Provided the dissociation of MgEDTA is faster than the formation of the MgCDTA complex, the medium will contain a concentration of free Mg2+ which at any given instant is near in equilibrium with a slowly decreasing concentration of MgEDTA; this free Mg2+ can support phosphorylation. This can explain why the rate with which CDTA stops phosphorylation decreases with an increase in the MgEDTA concentration. 6. When phosphorylation is stopped by addition of unlabelled ATP, the rate of dephosphorylation is faster than when it is stopped by addition of CDTA both with and without EDTA in the medium. CDTA reacts too slowly with Mg2+ to be used as a chelator in studies where a fast removal of Mg2+ is required. 7. A previous finding has been verified, namely that the rate of spontaneous, of K+-stimulated and of ADP-stimulated dephosphorylation is independent of the Mg2+ concentration during formation of phospho-enzyme.
摘要
研究了游离Mg2+、MgEDTA和MgCDTA对(Na+ + K+)激活的ATP酶(ATP磷酸水解酶,EC 3.6.1.3)磷酸化的影响。2. 将10 mM反式-1,2-二氨基环己烷-N,N,N',N'-四乙酸(CDTA)与[γ-32P]ATP同时加入到含有该酶、1 mM Mg2+和150 mM Na+的溶液中,并不妨碍磷酸酶的形成。当在加入CDTA后再加入[γ-32P]ATP时,随着加入CDTA和ATP之间时间间隔的增加,所获得的磷酸酶水平会降低。当培养基中含有MgEDTA时,CDTA无法阻止磷酸酶形成的情况变得更加明显。在有CDTA存在的情况下,形成的磷酸酶最大量随MgEDTA浓度增加而增加。3. 没有CDTA时,磷酸酶的稳态水平与游离Mg2+浓度的对数成正比。无论是游离Mg2+浓度次优还是最优时,MgEDTA对形成的磷酸酶水平均无影响。4. 以磷酸酶水平作为游离Mg2+的量度,实验表明CDTA与Mg2+反应比EDTA慢,但MgCDTA复合物的稳定常数高于MgEDTA复合物。5. 由于MgCDTA的稳定常数比MgEDTA高,向含有游离Mg2+和MgEDTA的培养基中加入CDTA不仅会螯合游离Mg2+,还会使平衡从MgEDTA向MgCDTA移动,即MgEDTA充当游离Mg2+的来源,然后被CDTA螯合。实验表明,Mg2+、EDTA和CDTA达到平衡需要几分钟。如果MgEDTA的解离速度比MgCDTA复合物的形成速度快,培养基将含有一定浓度的游离Mg2+,在任何给定时刻,该游离Mg2+与缓慢降低的MgEDTA浓度接近平衡;这种游离Mg2+可以支持磷酸化。这可以解释为什么CDTA停止磷酸化的速度会随着MgEDTA浓度的增加而降低。6. 当通过加入未标记的ATP停止磷酸化时,去磷酸化速度比在培养基中有或没有EDTA时通过加入CDTA停止磷酸化时更快。CDTA与Mg2+反应太慢,不能在需要快速去除Mg2+的研究中用作螯合剂。7. 先前的一项发现得到了验证,即自发的、K+刺激的和ADP刺激的去磷酸化速度在磷酸酶形成过程中与Mg2+浓度无关。