Meinnel T, Mechulam Y, Fayat G, Blanquet S
Laboratoire de Biochimie, Centre National de la Recherche Scientifique, Ecole Polytechnique, Palaiseau, France.
Nucleic Acids Res. 1992 Sep 25;20(18):4741-6. doi: 10.1093/nar/20.18.4741.
The rates of the cross-aminoacylation reactions of tRNAs(Met) catalyzed by methionyl-tRNA synthetases from various organisms suggest the occurrence of two types of tRNA(Met)/methionyl-tRNA synthetase systems. In this study, the tRNA determinants recognized by mammalian or E. coli methionyl-tRNA synthetases, which are representative members of the two types, have been examined. Like its prokaryotic counterpart, the mammalian enzyme utilizes the anticodon of tRNA as main recognition element. However, the mammalian cytoplasmic elongator tRNA(Met) species is not recognized by the bacterial synthetase, and both the initiator and elongator E. coli tRNA(Met) behave as poor substrates of the mammalian cytoplasmic synthetase. Synthetic genes encoding variants of tRNAs(Met), including the elongator one from mammals, were expressed in E. coli. tRNAs(Met) recognized by a synthetase of a given type can be converted into a substrate of an enzyme of the other type by introducing one-base substitutions in the anticodon loop or stem. In particular, a reduction of the size of the anticodon loop of cytoplasmic mammalian elongator tRNA(Met) from 9 to 7 bases, through the creation of an additional Watson-Crick pair at the bottom of the anticodon stem, makes it a substrate of the prokaryotic enzyme and decreases its ability to be methionylated by the mammalian enzyme. Moreover, enlarging the size of the anticodon loop of E. coli tRNA(Metm) from 7 to 9 bases, by disrupting the base pair at the bottom of the anticodon stem, renders the resulting tRNA a good substrate of the mammalian enzyme, while strongly altering its reaction with the prokaryotic synthetase. Finally, E. coli tRNA(Metf) can be rendered a better substrate of the mammalian enzyme by changing its U33 into a C. This modification makes the sequence of the anticodon loop of tRNA(Metf) identical to that of cytoplasmic initiator tRNA(Met).
来自不同生物体的甲硫氨酰 - tRNA合成酶催化的tRNA(Met)交叉氨酰化反应速率表明存在两种类型的tRNA(Met)/甲硫氨酰 - tRNA合成酶系统。在本研究中,已对两种类型的代表性成员——哺乳动物或大肠杆菌甲硫氨酰 - tRNA合成酶所识别的tRNA决定因素进行了研究。与原核生物对应物一样,哺乳动物酶利用tRNA的反密码子作为主要识别元件。然而,细菌合成酶无法识别哺乳动物细胞质延伸因子tRNA(Met)种类,并且大肠杆菌起始因子和延伸因子tRNA(Met)作为哺乳动物细胞质合成酶的底物表现较差。编码tRNA(Met)变体(包括来自哺乳动物的延伸因子)的合成基因在大肠杆菌中表达。通过在反密码子环或茎中引入单碱基取代,一种给定类型合成酶所识别的tRNA(Met)可以转化为另一种类型酶的底物。特别是,通过在反密码子茎底部形成额外的沃森 - 克里克碱基对,将细胞质哺乳动物延伸因子tRNA(Met)的反密码子环大小从9个碱基减少到7个碱基,使其成为原核酶的底物,并降低其被哺乳动物酶甲硫氨酰化的能力。此外,通过破坏反密码子茎底部的碱基对,将大肠杆菌tRNA(Metm)的反密码子环大小从7个碱基扩大到9个碱基,使所得tRNA成为哺乳动物酶的良好底物,同时强烈改变其与原核合成酶的反应。最后,将大肠杆菌tRNA(Metf)的U3替换为C,可以使其成为哺乳动物酶更好的底物。这种修饰使tRNA(Metf)反密码子环的序列与细胞质起始因子tRNA(Met)的序列相同。