Olsen W A, Korsmo H
J Clin Invest. 1977 Jul;60(1):181-8. doi: 10.1172/JCI108755.
Diabetes stimulates the functional activity of the intestinal brush border membrane with enhancement of both hydrolytic enzyme activity and membrane transport systems. To determine the mechanism of this effect, we studied the effects of streptozotocin diabetes on the metabolism of one membrane protein, sucrase-isomaltase, which increases its activity in diabetes. The protein was purified and an antiserum prepared. Sucrase-isomaltase from control and diabetic rats was immunologically identical as shown by Ouchterlony double-diffusion analysis of papain-solubilized mucosal proteins. The increase in sucrase enzyme activity in diabetic animals (31.0+/-1.4 U SEM 5 days after streptozotocin vs. 13.1+/-1.0 in controls) was the consequence of increased enzyme protein and not an alteration in catalytic efficiency as demonstrated by quantitative immunoprecipitin reactions. To account for increased sucrase-isomaltase protein in diabetes we studied papain-solubilized mucosal proteins labeled by injection of [(14)C]carbonate and [(14)C]leucine and analyzed incorporation into sucrase-isomaltase protein (anti-serum precipitable) and total protein (trichloroacetic acid precipitable). We found that diabetes did not affect the decay of labeled total protein, but prolonged the decay of labeled sucrase-isomaltase. t((1/2)) of sucrase-isomaltase was 4.4 h in control animals after [(14)C]carbonate injection and 8.8 and 10.2 h, respectively, 2 and 5 days after induction of streptozotocin diabetes. We obtained similar results in experiments with [(14)C]leucine with diabetes increasing t((1/2)) from 6 to 13.6 h. Diabetes did not appear to increase the rate of addition of sucrase-isomaltase to the brush border membrane, since it did not affect the 10- and 60-min incorporations of isotope into sucrase-isomaltase protein relative to incorporation into total protein and did not alter rate constants for synthesis calculated from the t((1/2)) and the change in enzyme mass over time.Thus, enhanced sucrase activity in the diabetic animal is the consequence of an increase in sucrase-isomaltase protein which develops because of a decrease in its rate of degradation.
糖尿病可通过增强水解酶活性和膜转运系统来刺激肠刷状缘膜的功能活性。为确定这种作用的机制,我们研究了链脲佐菌素诱导的糖尿病对一种膜蛋白——蔗糖酶 - 异麦芽糖酶代谢的影响,该蛋白在糖尿病状态下活性会增加。我们对该蛋白进行了纯化并制备了抗血清。通过对木瓜蛋白酶可溶解的黏膜蛋白进行双向免疫扩散分析表明,对照大鼠和糖尿病大鼠的蔗糖酶 - 异麦芽糖酶在免疫学上是相同的。糖尿病动物中蔗糖酶活性的增加(链脲佐菌素注射5天后为31.0±1.4 U SEM,而对照组为13.1±1.0)是酶蛋白增加的结果,而非催化效率改变所致,这一点通过定量免疫沉淀反应得以证实。为解释糖尿病中蔗糖酶 - 异麦芽糖酶蛋白增加的原因,我们研究了经注射[¹⁴C]碳酸盐和[¹⁴C]亮氨酸标记的木瓜蛋白酶可溶解的黏膜蛋白,并分析了其掺入蔗糖酶 - 异麦芽糖酶蛋白(抗血清可沉淀)和总蛋白(三氯乙酸可沉淀)的情况。我们发现,糖尿病并不影响标记总蛋白的降解,但延长了标记蔗糖酶 - 异麦芽糖酶的降解时间。注射[¹⁴C]碳酸盐后,对照动物中蔗糖酶 - 异麦芽糖酶的半衰期为4.4小时,链脲佐菌素诱导糖尿病后2天和5天,半衰期分别为8.8小时和10.2小时。在用[¹⁴C]亮氨酸进行的实验中我们得到了类似结果,糖尿病使半衰期从6小时增加到13.6小时。糖尿病似乎并未增加蔗糖酶 - 异麦芽糖酶添加到刷状缘膜的速率,因为它不影响相对于掺入总蛋白而言,同位素在10分钟和60分钟时掺入蔗糖酶 - 异麦芽糖酶蛋白的情况,也未改变根据半衰期和酶量随时间的变化计算出的合成速率常数。因此,糖尿病动物中蔗糖酶活性增强是由于蔗糖酶 - 异麦芽糖酶蛋白增加,而这种增加是由于其降解速率降低所致。