Suppr超能文献

豚鼠肾皮质切片中的钠排出与钾摄取

SODIUM EXTRUSION AND POTASSIUM UPTAKE IN GUINEA PIG KIDNEY CORTEX SLICES.

作者信息

WHITTEMBURY G

出版信息

J Gen Physiol. 1965 Mar;48(4):699-717. doi: 10.1085/jgp.48.4.699.

Abstract

Slices from the cortex corticis of the guinea pig kidney were immersed in a chilled solution without K and then reimmersed in warmer solutions. The Na and K concentrations and the membrane potential V(m) were then studied as a function of the Na and K concentrations of the reimmersion fluid. It was found that Na is extruded from the cells against a large electrochemical potential gradient. Q(10) for net Na outflux was approximately 2.5. At bath K concentrations larger than 8 mM the behavior of K was largely passive. At the outset of reimmersion (V(m) > E(K)) K influx seemed secondary to Na extrusion. Na extrusion would promote K entrance, being limited and requiring the presence of K in the bathing fluid. At bath K concentrations below 8 mM, K influx was up an electrochemical potential gradient. Thus a parallel active K uptake is apparent. Q(10) for net K influx was approximately 2.0. Dinitrophenol inhibited net Na outflux and net K influx, Q(10) became <1.1 for both fluxes. The ratio between these fluxes varied. Thus at the outset of reimmersion the net Na outflux to net K influx ratio was >1. After 8 minutes it was <1.

摘要

将豚鼠肾皮质的切片浸入无钾的冷却溶液中,然后再浸入温度较高的溶液中。随后研究了钠和钾的浓度以及膜电位V(m)与再浸入液中钠和钾浓度的函数关系。发现钠逆着大的电化学势梯度从细胞中被挤出。净钠外流的Q(10)约为2.5。在浴液钾浓度大于8 mM时,钾的行为在很大程度上是被动的。再浸入开始时(V(m)>E(K)),钾内流似乎继发于钠的挤出。钠的挤出会促进钾的进入,但受到限制且需要浴液中有钾的存在。在浴液钾浓度低于8 mM时,钾内流是顺着电化学势梯度的。因此,明显存在平行的主动钾摄取。净钾内流的Q(10)约为2.0。二硝基苯酚抑制了净钠外流和净钾内流,两种通量的Q(10)均变为<1.1。这些通量之间的比率各不相同。因此,在再浸入开始时,净钠外流与净钾内流的比率>1。8分钟后,该比率<1。

相似文献

1
SODIUM EXTRUSION AND POTASSIUM UPTAKE IN GUINEA PIG KIDNEY CORTEX SLICES.
J Gen Physiol. 1965 Mar;48(4):699-717. doi: 10.1085/jgp.48.4.699.
2
Cell electrical potentials during enhanced sodium extrusion in guinea-pig kidney cortex slices.
J Physiol. 1975 Sep;250(3):559-78. doi: 10.1113/jphysiol.1975.sp011070.
3
Energy barriers to sodium extrusion from sodium-rich kidney cortex slices.
J Physiol. 1966 Nov;187(2):361-8. doi: 10.1113/jphysiol.1966.sp008095.
4
SODIUM FLUXES IN DESHEATHED FROG SCIATIC NERVE.
J Gen Physiol. 1963 Jul;46(6):1191-222. doi: 10.1085/jgp.46.6.1191.
5
CATION TRANSPORT IN ESCHERICHIA COLI. IV. KINETICS OF NET K UPTAKE.
J Gen Physiol. 1963 Nov;47(2):329-46. doi: 10.1085/jgp.47.2.329.
6
Activation of the electrogenic sodium pump in guinea-pig auricles by internal sodium ions.
J Physiol. 1972 Feb;220(3):565-82. doi: 10.1113/jphysiol.1972.sp009723.
7
Net uptake of potassium in Neurospora. Exchange for sodium and hydrogen ions.
J Gen Physiol. 1968 Sep;52(3):424-43. doi: 10.1085/jgp.52.3.424.
10
Ion transport in Hydrodictyon africanum.
J Gen Physiol. 1967 Jul;50(6):1607-25. doi: 10.1085/jgp.50.6.1607.

引用本文的文献

2
Ouabain and regulation of cellular volume in slices of mammalian renal cortex.
J Physiol. 1981 Nov;320:319-32. doi: 10.1113/jphysiol.1981.sp013952.
4
Techniques and applications of extracellular space determination in mammalian tissues.
Experientia. 1982 Apr 15;38(4):411-21. doi: 10.1007/BF01952615.
5
Energy barriers to sodium extrusion from sodium-rich kidney cortex slices.
J Physiol. 1966 Nov;187(2):361-8. doi: 10.1113/jphysiol.1966.sp008095.
6
Two modes of Na extrusion in cells from guinea pig kidney cortex slices.
Pflugers Arch. 1970;316(1):1-25. doi: 10.1007/BF00587893.
7
The loss of intestinal transport capacity following preincubation in sodium-free media in vitro.
Pflugers Arch Gesamte Physiol Menschen Tiere. 1967;294(2):182-200. doi: 10.1007/BF00363605.
8
The mechanism of urate transport in rabbit kidney tubules in vitro.
Pflugers Arch. 1971;325(3):235-46. doi: 10.1007/BF00588357.
9
Kinetics of potassium transport across single distal tubules of rat kidney.
J Physiol. 1973 Jul;232(1):47-70. doi: 10.1113/jphysiol.1973.sp010256.

本文引用的文献

1
Diffusion relations of urea, inulin and chloride in some mammalian tissues.
J Physiol. 1942 Jun 2;101(1):86-105. doi: 10.1113/jphysiol.1942.sp003968.
2
The normal membrane potential of frog sartorius fibers.
J Cell Comp Physiol. 1949 Dec;34(3):383-96. doi: 10.1002/jcp.1030340304.
3
Electrolyte and water metabolism of rabbit kidney slices; effect of metabolic inhibitors.
Am J Physiol. 1951 Oct;167(1):206-23. doi: 10.1152/ajplegacy.1951.167.1.206.
4
Studies on potassium accumulation by rabbit kidney slices; effect of metabolic activity.
Am J Physiol. 1951 Apr 1;165(1):113-27. doi: 10.1152/ajplegacy.1951.165.1.113.
5
Membrane potential changes during sodium transport in frog sartorius muscle.
Nature. 1962 Mar 10;193:986-7. doi: 10.1038/193986a0.
6
Effect of strophanthidin on electrolyte excretion in the chicken.
Am J Physiol. 1960 Jul;199:49-54. doi: 10.1152/ajplegacy.1960.199.1.49.
7
The preparation of capillary microelectrodes.
J Physiol. 1955 May 27;128(2):31P.
8
SODIUM AND POTASSIUM FLUX OF SEPARATED RENAL TUBULES.
Am J Physiol. 1964 Mar;206:483-91. doi: 10.1152/ajplegacy.1964.206.3.483.
9
ION MOVEMENTS AND OXYGEN CONSUMPTION IN KIDNEY CORTEX SLICES.
J Physiol. 1963 Aug;168(1):158-77. doi: 10.1113/jphysiol.1963.sp007184.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验