Nyberg A M, Cronhjort M B
Department of Theoretical Physics, Royal Institute of Technology, Stockholm, Sweden.
J Theor Biol. 1992 Jul 21;157(2):175-90. doi: 10.1016/s0022-5193(05)80619-8.
The two most frequently occurring explanations for the existence and distribution of introns in the genes of different species are: (1) introns are remnants of the original genetic material. (2) Introns were introduced during evolution. We construct mathematical models corresponding to these two explanations, and calculate the probabilities that the intron distribution in genes from different species coding for actin, alpha-tubulin, triosephosphate isomerase and superoxide dismutase are described by these models. In both models, the branch lengths as well as the structure of the corresponding evolutionary tree is taken into account. Every branch in the evolutionary tree is assumed to have its own individual rate of loss of introns for the first model and rate of gain of introns for the second model. These rate constants are estimated from the actual number of introns. Using the rate constants we stimulate the intron evolution and calculate the probabilities that the actual intron arrangements are produced. The results for actin and alpha-tubulin, which are the two genes we have the most data for, favor the model corresponding conjecture (1), i.e. the idea that introns are old. This contradicts the results from an earlier attempt to model intron evolution where almost the same data was used (Dibb & Newman, 1989, EMBO J. 8, 2015-2021).