Suppr超能文献

采用气相色谱/质谱联用法定量分析氘标记葡萄糖的位置异构体。

Quantitation of positional isomers of deuterium-labeled glucose by gas chromatography/mass spectrometry.

作者信息

Guo Z K, Lee W N, Katz J, Bergner A E

机构信息

Cedars-Sinai Medical Center, Los Angeles, California 90048.

出版信息

Anal Biochem. 1992 Aug 1;204(2):273-82. doi: 10.1016/0003-2697(92)90238-3.

Abstract

A method for determining the site and extent of deuterium (D) labeling of glucose by GC/MS and mass fragmentography was developed. Under chemical and electron impact ionization, ion clusters m/z 328, 242, 217, 212, and 187 of glucose aldonitrile pentaacetate and m/z 331 and 169 of pentaacetate derivative were produced. From the mass spectra of 13C- and D-labeled reference compounds, glucose carbon and hydrogen (C-H) positions included in these fragments were deduced to be m/z 328 = C1-C6, 2,3,4,5,6,6-H6; m/z 331 = C1-C6, 1,2,3,4,5,6,6-H7; m/z 169 = C1-C6, 1,3,4,5,6,6-H6; m/z 187 = C3-C6, 3,4,5,6,6-H5; m/z 212 = C1-C5, 2,3,4,5-H4; m/z 217 = C4-C6, 4,5,6,6-H4; and m/z 242 = C1-C4, 2,3,4-H3. After correction for isotope discrimination and deuterium-hydrogen exchange, the D enrichment of these fragments can be quantitated using selective ion monitoring, and the D enrichment of all C-H positions can be obtained by the difference in enrichment of the corresponding ion pairs. The validity of this approach was tested by examining D enrichment of known mixtures of 1-d1-, 2-d1-, 3-d1-, and 5,6,6-d3-glucose with unlabeled glucose and D enrichment of perdeuterated glucose using these fragments. This method was used to determine deuterium incorporation in C1 through C6 of blood glucose in fasted (24 h) rats infused with deuterated water. The distribution of deuterium was similar to that found by Postle and Bloxham (1980, Biochem. J. 192, 65-73). Approximately one deuterium atom was incorporated into C5 and only 75% deuterium atom was incorporated into C2. The enrichment of C2 and C6 of glucose relative to that of water indicated that 74 +/- 9% of plasma glucose was newly formed 4 h after the onset of deuterium infusion, and gluconeogenesis accounted for about 76 +/- 7% of the glucose 6-phosphate flux.

摘要

开发了一种通过气相色谱/质谱联用(GC/MS)和质量碎片分析法来确定葡萄糖中氘(D)标记位点和程度的方法。在化学电离和电子轰击电离条件下,生成了葡萄糖醛腈五乙酸酯的离子簇m/z 328、242、217、212和187,以及五乙酸酯衍生物的m/z 331和169。从13C和D标记的参考化合物的质谱图中,推断出这些碎片中包含的葡萄糖碳和氢(C-H)位置为:m/z 328 = C1-C6,2,3,4,5,6,6-H6;m/z 331 = C1-C6,1,2,3,4,5,6,6-H7;m/z 169 = C1-C6,1,3,4,5,6,6-H6;m/z 187 = C3-C6,3,4,5,6,6-H5;m/z 212 = C1-C5,2,3,4,5-H4;m/z 217 = C4-C6,4,5,6,6-H4;m/z 242 = C1-C4,2,3,4-H3。在对同位素歧视和氘-氢交换进行校正后,可使用选择性离子监测对这些碎片的氘富集进行定量,通过相应离子对富集的差异可获得所有C-H位置的氘富集情况。通过检测1-d1-、2-d1-、3-d1-和5,6,6-d3-葡萄糖与未标记葡萄糖的已知混合物的氘富集情况以及使用这些碎片检测全氘代葡萄糖的氘富集情况,对该方法的有效性进行了测试。该方法用于确定在禁食(24小时)大鼠中静脉输注氘代水后,血糖中C1至C6的氘掺入情况。氘的分布与Postle和Bloxham(1980年,《生物化学杂志》192, 65 - 73)所发现的相似。大约一个氘原子掺入C5,只有75%的氘原子掺入C2。葡萄糖C2和C6相对于水的富集表明,氘输注开始4小时后,74±9%的血浆葡萄糖是新生成的,糖异生约占葡萄糖6-磷酸通量的76±7%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验