Suppr超能文献

筛选从马来酸盐生产D-苹果酸盐的微生物。

Screening for microorganisms producing D-malate from maleate.

作者信息

van der Werf M J, van den Tweel W J, Hartmans S

机构信息

Department of Food Science, Wageningen Agricultural University, The Netherlands.

出版信息

Appl Environ Microbiol. 1992 Sep;58(9):2854-60. doi: 10.1128/aem.58.9.2854-2860.1992.

Abstract

More than 300 microorganisms were screened for their ability to convert maleate into D-malate as a result of the action of maleate hydratase. Accumulation of fumarate during incubation of permeabilized cells with maleate was shown to be indicative of one of the two enzymes known to transform maleate. The ratio in which fumarate and malate accumulated could be used to estimate the enantiomeric composition of the malate formed. Many strains (n = 128) were found to be capable of converting maleate to D-malate with an enantiomeric purity of more than 97%. Pseudomonas pseudoalcaligenes NCIMB 9867 was selected for more detailed studies. Although this strain was not able to grow on maleate, permeabilized cells were able to degrade maleate to undetectable levels, with a concomitant formation of D-malate. The D-malate was formed with an enantiomeric purity of more than 99.97%.

摘要

对300多种微生物进行了筛选,以检测它们在苹果酸水合酶作用下将马来酸转化为D-苹果酸的能力。透化细胞与马来酸孵育期间富马酸的积累表明存在已知能转化马来酸的两种酶之一。富马酸和苹果酸积累的比例可用于估计所形成苹果酸的对映体组成。发现许多菌株(n = 128)能够将马来酸转化为对映体纯度超过97%的D-苹果酸。选择了假产碱假单胞菌NCIMB 9867进行更详细的研究。虽然该菌株不能在马来酸上生长,但透化细胞能够将马来酸降解到检测不到的水平,并同时形成D-苹果酸。所形成的D-苹果酸的对映体纯度超过99.97%。

相似文献

1
Screening for microorganisms producing D-malate from maleate.
Appl Environ Microbiol. 1992 Sep;58(9):2854-60. doi: 10.1128/aem.58.9.2854-2860.1992.
2
Microbial production of D-malate from maleate.
Appl Environ Microbiol. 1993 Apr;59(4):1110-3. doi: 10.1128/aem.59.4.1110-1113.1993.
3
Growth of Pseudomonas fluorescens with sodium maleate as a carbon source.
Appl Microbiol. 1970 Nov;20(5):710-4. doi: 10.1128/am.20.5.710-714.1970.
4
Identification of a Specific Maleate Hydratase in the Direct Hydrolysis Route of the Gentisate Pathway.
Appl Environ Microbiol. 2015 Sep 1;81(17):5753-60. doi: 10.1128/AEM.00975-15. Epub 2015 Jun 12.
5
The enzymic degradation of alkyl-substituted gentisates, maleates and malates.
Biochem J. 1971 Mar;122(1):29-40. doi: 10.1042/bj1220029.
6
Modeling solid-to-solid biocatalysis: integration of six consecutive steps.
Biotechnol Bioeng. 2000 Sep 20;69(6):597-606. doi: 10.1002/1097-0290(20000920)69:6<597::aid-bit3>3.0.co;2-c.
7
Biological production of L-malate: recent advances and future prospects.
World J Microbiol Biotechnol. 2017 Dec 6;34(1):6. doi: 10.1007/s11274-017-2349-8.
8
Formation of malate from glycollate by Pseudomonas ovalis Chester.
Nature. 1959 Jun 27;183:1791-3. doi: 10.1038/1831791a0.
9
Transformations of organic compounds by immobilized microbial cells.
Adv Appl Microbiol. 1977;22:1-27. doi: 10.1016/s0065-2164(08)70158-8.
10
Enzymic formation of D-malate.
Biochem J. 1968 Dec;110(4):798-800. doi: 10.1042/bj1100798.

引用本文的文献

1
Microbiota derived D-malate inhibits skeletal muscle growth and angiogenesis during aging via acetylation of Cyclin A.
EMBO Rep. 2024 Feb;25(2):524-543. doi: 10.1038/s44319-023-00028-y. Epub 2024 Jan 22.
2
Metabolites as Risk Factors for Diabetic Retinopathy in Patients With Type 2 Diabetes: A 12-Year Follow-up Study.
J Clin Endocrinol Metab. 2023 Dec 21;109(1):100-106. doi: 10.1210/clinem/dgad452.
4
Identification of a Specific Maleate Hydratase in the Direct Hydrolysis Route of the Gentisate Pathway.
Appl Environ Microbiol. 2015 Sep 1;81(17):5753-60. doi: 10.1128/AEM.00975-15. Epub 2015 Jun 12.
5
Synthetic and quantum chemical study on the regioselective addition of amines to methyl maleamate.
J Mol Model. 2013 Sep;19(9):3683-94. doi: 10.1007/s00894-013-1905-x. Epub 2013 Jun 19.
6
Regulation of aerobic and anaerobic D-malate metabolism of Escherichia coli by the LysR-type regulator DmlR (YeaT).
J Bacteriol. 2010 May;192(10):2503-11. doi: 10.1128/JB.01665-09. Epub 2010 Mar 16.
7
Purification and Characterization of Maleate Hydratase from Pseudomonas pseudoalcaligenes.
Appl Environ Microbiol. 1993 Sep;59(9):2823-9. doi: 10.1128/aem.59.9.2823-2829.1993.

本文引用的文献

2
Metabolism of l-Malate and d-Malate by a Species of Pseudomonas.
J Bacteriol. 1970 Dec;104(3):1197-202. doi: 10.1128/jb.104.3.1197-1202.1970.
3
Metabolism of Styrene Oxide and 2-Phenylethanol in the Styrene-Degrading Xanthobacter Strain 124X.
Appl Environ Microbiol. 1989 Nov;55(11):2850-5. doi: 10.1128/aem.55.11.2850-2855.1989.
5
Enzymic activation and cleavage of D- and L-malate.
Biochim Biophys Acta. 1963 Feb 5;69:435-38. doi: 10.1016/0006-3002(63)91288-5.
6
The oxidation of D-alpha-hydroxy acids in animal tissues.
Biochem J. 1961 Oct;81(1):104-14. doi: 10.1042/bj0810104.
7
The bacterial oxidation of nicotinic acid.
J Biol Chem. 1957 Oct;228(2):923-45.
9
D-Malic enzyme of Pseudomonas fluorescens.
Eur J Biochem. 1982 Apr;123(3):547-52. doi: 10.1111/j.1432-1033.1982.tb06567.x.
10
[Effects of alcohol drinking on mental task performance].
Sangyo Igaku. 1983 Sep;25(5):406-14. doi: 10.1539/joh1959.25.406.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验