Hategan Alina, Law Richard, Kahn Samuel, Discher Dennis E
Biophysical Engineering Lab and Institute for Medicine and Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6315, USA.
Biophys J. 2003 Oct;85(4):2746-59. doi: 10.1016/S0006-3495(03)74697-9.
Membrane tension underlies a range of cell physiological processes. Strong adhesion of the simple red cell is used as a simple model of a spread cell with a finite membrane tension-a state which proves useful for studies of both membrane rupture kinetics and atomic force microscopy (AFM) probing of native structure. In agreement with theories of strong adhesion, the cell takes the form of a spherical cap on a substrate densely coated with poly-L-lysine. The spreading-induced tension, sigma, in the membrane is approximately 1 mN/m, which leads to rupture over many minutes; and sigma is estimated from comparable rupture times in separate micropipette aspiration experiments. Under the sharpened tip of an AFM probe, nano-Newton impingement forces (10-30 nN) are needed to penetrate the tensed erythrocyte membrane, and these forces increase exponentially with tip velocity ( approximately nm/ms). We use the results to clarify how tapping-mode AFM imaging works at high enough tip velocities to avoid rupturing the membrane while progressively compressing it to a approximately 20-nm steric core of lipid and protein. We also demonstrate novel, reproducible AFM imaging of tension-supported membranes in physiological buffer, and we describe a stable, distended network consistent with the spectrin cytoskeleton. Additionally, slow retraction of the AFM tip from the tensed membrane yields tether-extended, multipeak sawtooth patterns of average force approximately 200 pN. In sum we show how adhesive tensioning of the red cell can be used to gain novel insights into native membrane dynamics and structure.
膜张力是一系列细胞生理过程的基础。简单红细胞的强黏附被用作具有有限膜张力的铺展细胞的简单模型——这种状态被证明对研究膜破裂动力学和原生结构的原子力显微镜(AFM)探测都很有用。与强黏附理论一致,细胞在密集涂有聚-L-赖氨酸的底物上呈球形帽状。膜中由铺展引起的张力σ约为1 mN/m,这会导致在许多分钟内发生破裂;并且σ是通过单独的微量移液器抽吸实验中的可比破裂时间来估计的。在AFM探针的尖锐尖端下,需要纳米牛顿级的撞击力(10 - 30 nN)才能穿透张紧的红细胞膜,并且这些力随尖端速度(约nm/ms)呈指数增加。我们利用这些结果来阐明轻敲模式AFM成像在足够高的尖端速度下是如何工作的,以避免膜破裂,同时将其逐渐压缩到约20纳米的脂质和蛋白质空间核心。我们还展示了在生理缓冲液中对张力支撑膜的新颖、可重复的AFM成像,并描述了与血影蛋白细胞骨架一致的稳定、扩张网络。此外,AFM尖端从张紧的膜上缓慢缩回会产生平均力约为200 pN的系绳延伸、多峰锯齿形图案。总之,我们展示了红细胞的黏附张紧如何用于获得对原生膜动力学和结构的新见解。