Suppr超能文献

粘附张力细胞膜:裂解动力学与原子力显微镜探测

Adhesively-tensed cell membranes: lysis kinetics and atomic force microscopy probing.

作者信息

Hategan Alina, Law Richard, Kahn Samuel, Discher Dennis E

机构信息

Biophysical Engineering Lab and Institute for Medicine and Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6315, USA.

出版信息

Biophys J. 2003 Oct;85(4):2746-59. doi: 10.1016/S0006-3495(03)74697-9.

Abstract

Membrane tension underlies a range of cell physiological processes. Strong adhesion of the simple red cell is used as a simple model of a spread cell with a finite membrane tension-a state which proves useful for studies of both membrane rupture kinetics and atomic force microscopy (AFM) probing of native structure. In agreement with theories of strong adhesion, the cell takes the form of a spherical cap on a substrate densely coated with poly-L-lysine. The spreading-induced tension, sigma, in the membrane is approximately 1 mN/m, which leads to rupture over many minutes; and sigma is estimated from comparable rupture times in separate micropipette aspiration experiments. Under the sharpened tip of an AFM probe, nano-Newton impingement forces (10-30 nN) are needed to penetrate the tensed erythrocyte membrane, and these forces increase exponentially with tip velocity ( approximately nm/ms). We use the results to clarify how tapping-mode AFM imaging works at high enough tip velocities to avoid rupturing the membrane while progressively compressing it to a approximately 20-nm steric core of lipid and protein. We also demonstrate novel, reproducible AFM imaging of tension-supported membranes in physiological buffer, and we describe a stable, distended network consistent with the spectrin cytoskeleton. Additionally, slow retraction of the AFM tip from the tensed membrane yields tether-extended, multipeak sawtooth patterns of average force approximately 200 pN. In sum we show how adhesive tensioning of the red cell can be used to gain novel insights into native membrane dynamics and structure.

摘要

膜张力是一系列细胞生理过程的基础。简单红细胞的强黏附被用作具有有限膜张力的铺展细胞的简单模型——这种状态被证明对研究膜破裂动力学和原生结构的原子力显微镜(AFM)探测都很有用。与强黏附理论一致,细胞在密集涂有聚-L-赖氨酸的底物上呈球形帽状。膜中由铺展引起的张力σ约为1 mN/m,这会导致在许多分钟内发生破裂;并且σ是通过单独的微量移液器抽吸实验中的可比破裂时间来估计的。在AFM探针的尖锐尖端下,需要纳米牛顿级的撞击力(10 - 30 nN)才能穿透张紧的红细胞膜,并且这些力随尖端速度(约nm/ms)呈指数增加。我们利用这些结果来阐明轻敲模式AFM成像在足够高的尖端速度下是如何工作的,以避免膜破裂,同时将其逐渐压缩到约20纳米的脂质和蛋白质空间核心。我们还展示了在生理缓冲液中对张力支撑膜的新颖、可重复的AFM成像,并描述了与血影蛋白细胞骨架一致的稳定、扩张网络。此外,AFM尖端从张紧的膜上缓慢缩回会产生平均力约为200 pN的系绳延伸、多峰锯齿形图案。总之,我们展示了红细胞的黏附张紧如何用于获得对原生膜动力学和结构的新见解。

相似文献

1
Adhesively-tensed cell membranes: lysis kinetics and atomic force microscopy probing.
Biophys J. 2003 Oct;85(4):2746-59. doi: 10.1016/S0006-3495(03)74697-9.
2
Indentation and adhesive probing of a cell membrane with AFM: theoretical model and experiments.
Biophys J. 2005 Nov;89(5):3203-13. doi: 10.1529/biophysj.105.063826. Epub 2005 Aug 19.
3
Atomic force pulling: probing the local elasticity of the cell membrane.
Eur Biophys J. 2001;30(2):83-90. doi: 10.1007/s002490000122.
4
Nano-mechanical exploration of the surface and sub-surface of hydrated cells of Staphylococcus epidermidis.
Antonie Van Leeuwenhoek. 2006 Apr-May;89(3-4):373-86. doi: 10.1007/s10482-005-9041-y. Epub 2006 Apr 25.
5
Hydrodynamics of confined membranes.
Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Jul;70(1 Pt 1):011104. doi: 10.1103/PhysRevE.70.011104. Epub 2004 Jul 27.
6
Structure of the erythrocyte membrane skeleton as observed by atomic force microscopy.
Biophys J. 1998 May;74(5):2171-83. doi: 10.1016/S0006-3495(98)77926-3.
7
Topographical pattern dynamics in passive adhesion of cell membranes.
Biophys J. 2004 Nov;87(5):3547-60. doi: 10.1529/biophysj.104.041475. Epub 2004 Aug 31.
8
Sample preparation and imaging of erythrocyte cytoskeleton with the atomic force microscopy.
Cell Biochem Biophys. 2003;38(3):251-70. doi: 10.1385/CBB:38:3:251.
9
A new image correction method for live cell atomic force microscopy.
Phys Med Biol. 2007 Apr 21;52(8):2185-96. doi: 10.1088/0031-9155/52/8/010. Epub 2007 Mar 29.
10
Rheological analysis and measurement of neutrophil indentation.
Biophys J. 2004 Dec;87(6):4246-58. doi: 10.1529/biophysj.103.031765. Epub 2004 Sep 10.

引用本文的文献

2
Fluorescent probe for imaging intercellular tension: molecular force approach.
RSC Adv. 2024 Jul 19;14(32):22877-22881. doi: 10.1039/d4ra02647k.
3
A mathematical model of fibrinogen-mediated erythrocyte-erythrocyte adhesion.
Commun Biol. 2023 Feb 17;6(1):192. doi: 10.1038/s42003-023-04560-4.
4
How sticky? How tight? How hot? Imaging probes for fluid viscosity, membrane tension and temperature measurements at the cellular level.
Int J Biochem Cell Biol. 2022 Dec;153:106329. doi: 10.1016/j.biocel.2022.106329. Epub 2022 Nov 3.
5
Nucleus size and its effect on nucleosome stability in living cells.
Biophys J. 2022 Nov 1;121(21):4189-4204. doi: 10.1016/j.bpj.2022.09.019. Epub 2022 Sep 21.
6
Substrate Stiffness-Driven Membrane Tension Modulates Vesicular Trafficking Caveolin-1.
ACS Nano. 2022 Mar 22;16(3):4322-4337. doi: 10.1021/acsnano.1c10534. Epub 2022 Mar 7.
7
Engineering microscale systems for fully autonomous intracellular neural interfaces.
Microsyst Nanoeng. 2020 Feb 10;6:1. doi: 10.1038/s41378-019-0121-y. eCollection 2020.
8
Interactions of platelets with circulating tumor cells contribute to cancer metastasis.
Sci Rep. 2021 Jul 29;11(1):15477. doi: 10.1038/s41598-021-94735-y.
9
Mechanical properties of external confinement modulate the rounding dynamics of cells.
Biophys J. 2021 Jun 1;120(11):2306-2316. doi: 10.1016/j.bpj.2021.04.006. Epub 2021 Apr 20.

本文引用的文献

1
Modification of supported lipid membranes by atomic force microscopy.
Biophys J. 1993 Mar;64(3):898-902. doi: 10.1016/S0006-3495(93)81450-4.
3
Molecular topography imaging by intermembrane fluorescence resonance energy transfer.
Proc Natl Acad Sci U S A. 2002 Oct 29;99(22):14147-52. doi: 10.1073/pnas.212392599. Epub 2002 Oct 21.
4
5
Atomic force microscopy of the erythrocyte membrane skeleton.
J Microsc. 2001 Dec;204(Pt 3):212-25. doi: 10.1046/j.1365-2818.2001.00960.x.
6
Atomic force microscopic observation of mechanically traumatized erythrocytes.
Artif Organs. 2002 Jan;26(1):10-7. doi: 10.1046/j.1525-1594.2002.06702.x.
7
Artificially induced unusual shape of erythrocytes: an atomic force microscopy study.
J Microsc. 2001 Oct;204(Pt 1):46-52. doi: 10.1046/j.1365-2818.2001.00937.x.
8
Voltage-induced membrane movement.
Nature. 2001 Sep 27;413(6854):428-32. doi: 10.1038/35096578.
9
Elastic thickness compressibilty of the red cell membrane.
Biophys J. 2001 Sep;81(3):1452-63. doi: 10.1016/S0006-3495(01)75800-6.
10
Erythrophagocytosis on the peripheral blood smear and paroxysmal cold hemoglobinuria.
Transfusion. 2001 Aug;41(8):1073-4. doi: 10.1046/j.1537-2995.2001.41081073.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验