Sen Shamik, Subramanian Shyamsundar, Discher Dennis E
Biophysical Engineering Lab, University of Pennsylvania, Philadelphia, PA, USA.
Biophys J. 2005 Nov;89(5):3203-13. doi: 10.1529/biophysj.105.063826. Epub 2005 Aug 19.
In probing adhesion and cell mechanics by atomic force microscopy (AFM), the mechanical properties of the membrane have an important if neglected role. Here we theoretically model the contact of an AFM tip with a cell membrane, where direct motivation and data are derived from a prototypical ligand-receptor adhesion experiment. An AFM tip is functionalized with a prototypical ligand, SIRPalpha, and then used to probe its native receptor on red cells, CD47. The interactions prove specific and typical in force, and also show in detachment, a sawtooth-shaped disruption process that can extend over hundreds of nm. The theoretical model here that accounts for both membrane indentation as well as membrane extension in tip retraction incorporates membrane tension and elasticity as well as AFM tip geometry and stochastic disruption. Importantly, indentation depth proves initially proportional to membrane tension and does not follow the standard Hertz model. Computations of detachment confirm nonperiodic disruption with membrane extensions of hundreds of nm set by membrane tension. Membrane mechanical properties thus clearly influence AFM probing of cells, including single molecule adhesion experiments.
在通过原子力显微镜(AFM)探测细胞黏附与细胞力学时,细胞膜的力学特性有着重要作用,尽管常被忽视。在此,我们从理论上对AFM探针与细胞膜的接触进行建模,直接的动机和数据源自一个典型的配体 - 受体黏附实验。用一种典型配体信号调节蛋白α(SIRPalpha)对AFM探针进行功能化处理,然后用于探测红细胞上的天然受体CD47。实验证明相互作用具有特异性且力的作用典型,在分离过程中还呈现出一种可延伸数百纳米的锯齿状破坏过程。这里的理论模型既考虑了膜的压痕,也考虑了探针回缩时膜的伸展,纳入了膜张力和弹性以及AFM探针几何形状和随机破坏因素。重要的是,压痕深度最初证明与膜张力成正比,并不遵循标准的赫兹模型。分离计算证实了由膜张力设定的数百纳米膜伸展的非周期性破坏。因此,膜的力学特性显然会影响对细胞的AFM探测,包括单分子黏附实验。