Suppr超能文献

Brain stem opioidergic and GABAergic neurons mediate the antinociceptive effect of nitrous oxide in Fischer rats.

作者信息

Ohashi Yoko, Guo Tianzhi, Orii Ryo, Maze Mervyn, Fujinaga Masahiko

机构信息

Department of Anaesthetics and Intensive Care, Imperial College of Science, Technology and Medicine, University of London, United Kingdom.

出版信息

Anesthesiology. 2003 Oct;99(4):947-54. doi: 10.1097/00000542-200310000-00030.

Abstract

BACKGROUND

Recent studies have revealed that N2O exerts its antinociceptive effect by inducing opioid peptide release in the brain stem, thereby activating the descending noradrenergic inhibitory neurons, which modulate pain processing in the spinal cord. However, the precise neuronal pathways that mediate these events remain to be determined.

METHODS

Using immunohistochemical and behavioral techniques in adult male Fischer rats, the authors studied the involvement of brain stem opioidergic and gamma-aminobutyric acid-mediated (GABAergic) neurons in the N2O-induced antinociceptive effect using discrete microinjections of an opioid receptor antagonist or GABAergic activator into the periaqueductal gray area and pontine noradrenergic nuclei. They used c-Fos expression as an immunohistochemical mark of neuronal activation induced by N2O and the plantar test as the behavioral paradigm for nociception.

RESULTS

Microinjection of either naloxone (an opioid receptor antagonist) or muscimol (a gamma-aminobutyric acid receptor type A agonist) into the ventrolateral periaqueductal gray area inhibited N2O-induced c-Fos expression in the spinal cord and pontine noradrenergic nuclei, particularly in the A7. Microinjection of either naloxone or muscimol into the A7 nuclei also inhibited N2O-induced c-Fos expression in the spinal cord and the N2O-induced antinociceptive effect by the plantar test.

CONCLUSIONS

These results support the hypothesis that both opioidergic and GABAergic neurons mediate the antinociceptive effect of N2O at the periaqueductal gray area and A7 in the brain stem. The authors postulate that N2O-induced opioid peptide release leads to inhibition of GABAergic neurons via opioid receptors. The descending noradrenergic inhibitory pathways, which are tonically inhibited by these gamma-aminobutyric acid neurons, are thereby activated (disinhibited) and modulate pain processing in the spinal cord.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验