Suppr超能文献

Effect of duckweed cover on greenhouse gas emissions and odour release from waste stabilisation ponds.

作者信息

van der Steen N P, Nakiboneka P, Mangalika L, Ferrer A V M, Gijzen H J

机构信息

International Institute for Infrastructural, Hydraulic and Environmental Engineering, PO Box 3015, 2601 DA, Delft, The Netherlands.

出版信息

Water Sci Technol. 2003;48(2):341-8.

Abstract

Treatment of wastewater in stabilisation pond systems prevents the negative environmental impact of uncontrolled disposal of sewage. However, even a natural treatment system may generate secondary negative environmental impacts in terms of energy consumption, emission of greenhouse gases and emission of odorous compounds. Whereas natural systems have an advantage over electro-mechanical systems in that they use less hardware and less energy, it is not yet known whether secondary environmental effects in the form of greenhouse gas emissions are lower for these systems. This research intends to be a first step in the direction of answering this question by assessing gas emissions from two types of natural systems, namely algae-based and duckweed-based stabilisation ponds. The H2S volatilisation from laboratory scale pond-reactors has been determined by drawing the air above the water surface continuously through a solution of 1 M NaOH for absorption of sulphide. The amount of H2S that volatilised from the algae pond-reactor, and was trapped in the NaOH trap, was found to be 2.5-86 mg/m2/day. The H2S volatilisation from the duckweed pond-reactor was found to be negligible, even though the sulphide concentration was 9.7 mg/l S(2-). The duckweed cover was a physical barrier for volatilisation, since bubbles were trapped in the cover. In addition the duckweed layer was found to be afavourable environment for both aerobic sulphide oxidisers (Beggiatoa gigantae) as well as for photosynthetic purple sulphur bacteria belonging to the genus Chromatium. These may also have contributed to the prevention of H2S volatilisation. Results on methane emissions were not conclusive so far, but the same mechanisms that prevent H2S volatilisation may also prevent methane volatilisation. Therefore it was concluded that duckweed covers on stabilisation ponds may reduce the emission of both odorous and greenhouse gases.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验